Spark其实是Hadoop生态圈的一部分,需要用到Hadoop的HDFS、YARN等组件。

为了方便我们的使用,Spark官方已经为我们将Hadoop与scala组件集成到spark里的安装包,解压开箱即可使用,给我们提供了很大的方便。

如果我们只是本地学习的spark,又不想搭建复杂的hadoop集群,就可以使用该安装包。


spark-3.2.0-bin-hadoop3.2-scala2.13.tgz

但是,如果是生产环境,想要搭建集群,或者后面想要自定义一些hadoop配置,就可以单独搭建Hadoop集群,后面再与spark进行整合。(推荐)

下面讲一下Hadoop集群环境的搭建。

三台服务器,需要提前做好初始化,配置好主机名、免密登录与JDK配置等等。

参考前面一篇文章:Spark集群环境搭建——服务器环境初始化

https://www.cnblogs.com/doublexi/p/15623436.html

搭建Hadoop集群

1、下载:

Hadoop官网地址:http://hadoop.apache.org/

下载地址:https://archive.apache.org/dist/hadoop/common/hadoop-3.2.2/

cd /data/apps/shell/software
wget https://archive.apache.org/dist/hadoop/common/hadoop-3.2.2/hadoop-3.2.2.tar.gz

2、解压安装Hadoop

解压:

tar xf hadoop-3.2.2.tar.gz
mv hadoop-3.2.2 /data/apps/

编辑环境变量:

vim /etc/profile
##HADOOP_HOME
export HADOOP_HOME=/data/apps/hadoop-3.2.2/
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

source生效:

source /etc/profile

测试:

# hadoop version
Hadoop 3.2.2
Source code repository Unknown -r 7a3bc90b05f257c8ace2f76d74264906f0f7a932
Compiled by hexiaoqiao on 2021-01-03T09:26Z
Compiled with protoc 2.5.0
From source with checksum 5a8f564f46624254b27f6a33126ff4
This command was run using /data/apps/hadoop-3.2.2/share/hadoop/common/hadoop-common-3.2.2.jar

3、集群配置:

3.1、HDFS集群配置:

配置:hadoop-env.sh

将JDK路径明确配置给HDFS

cd /data/apps/hadoop-3.2.2/etc/hadoop/
vim hadoop-env.sh
...
export JAVA_HOME=/usr/java/jdk1.8.0_162 export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

指定NameNode节点以及数据存储目录(修改core-site.xml)

vim core-site.xml

<configuration>
<!-- 指定HDFS中NameNode的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://dev-spark-master-206:8020</value>
</property>
<!-- 指定Hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/data/apps/hadoop-3.2.2/data/tmp</value>
</property>
</configuration>

core-site.xml的默认配置:https://hadoop.apache.org/docs/r2.9.2/hadoop-project-dist/hadoop-common/coredefault.xml

指定secondarynamenode节点(修改hdfs-site.xml)

vim hdfs-site.xml

<configuration>
<!-- 指定Hadoop辅助名称节点主机配置 -->
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>dev-spark-slave-172:50090</value>
</property>
<!--副本数量 -->
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
</configuration>

官方默认配置:https://hadoop.apache.org/docs/r2.9.2/hadoop-project-dist/hadoop-hdfs/hdfsdefault.xml

指定datanode从节点(修改workers文件,每个节点配置信息占一行)

注意:这里hadoop2.x是用slaves文件,3.x是用workers文件

vim workers
dev-spark-master-206
dev-spark-slave-171
dev-spark-slave-172

注意:该文件中添加的内容结尾不允许有空格,文件中不允许有空行。

3.2、MapReduce集群配置

指定MapReduce使用的jdk路径(修改mapred-env.sh)

vim mapred-env.sh

export JAVA_HOME=/usr/java/jdk1.8.0_162

指定MapReduce计算框架运行Yarn资源调度框架(修改mapred-site.xml)

vim mapred-site.xml

<configuration>
<!-- 指定MR运行在Yarn上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<!-- 指定MR环境变量 -->
<property>
<name>yarn.app.mapreduce.am.env</name>
<value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
</property>
<property>
<name>mapreduce.map.env</name>
<value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
</property>
<property>
<name>mapreduce.reduce.env</name>
<value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
</property>
</configuration>

mapred-site.xml默认配置:https://hadoop.apache.org/docs/r2.9.2/hadoop-mapreduce-client/hadoop-mapreduceclient-core/mapred-default.xml

3.3、Yarn集群配置

编辑yarn-env.sh,指定JDK路径

vim yarn-env.sh

export JAVA_HOME=/usr/java/jdk1.8.0_162

指定ResourceMnager的master节点信息(修改yarn-site.xml)

vim yarn-site.xml

<configuration>

<!-- Site specific YARN configuration properties -->
<!-- 指定YARN的ResourceManager的地址 -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>dev-spark-slave-172</value>
</property>
<!-- Reducer获取数据的方式 -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>

yarn-site.xml的默认配置:https://hadoop.apache.org/docs/r2.9.2/hadoop-yarn/hadoop-yarn-common/yarndefault.xml

指定NodeManager节点(slaves文件已修改)

注意:

Hadoop安装目录所属用户和所属用户组信息,默认是501 dialout,而我们操作Hadoop集群的用户使用的是虚拟机的root用户,

所以为了避免出现信息混乱,修改Hadoop安装目录所属用户和用户组!!

chown -R root:root /data/apps/hadoop-3.2.2

3.4、将Hadoop安装包发送到其他节点

[root@dev-spark-master-206 ~]# cd /data/apps/
# 将hadoop安装包发送到其他两台服务器相同的目录
[root@dev-spark-master-206 apps]# rsync-script hadoop-3.2.2/

在其他两台服务器上,也需要重新编辑一下环境变量,并source加载

# 检查三台服务器上是否有这个hadoop包,以及环境变量配置
# vim /etc/profile
##HADOOP_HOME
export HADOOP_HOME=/data/apps/hadoop-3.2.2/
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

三台机器上都要source一下

source /etc/profile

三台机器上运行hadoop命令测试:

# hadoop version
Hadoop 3.2.2
Source code repository Unknown -r 7a3bc90b05f257c8ace2f76d74264906f0f7a932
Compiled by hexiaoqiao on 2021-01-03T09:26Z
Compiled with protoc 2.5.0
From source with checksum 5a8f564f46624254b27f6a33126ff4
This command was run using /data/apps/hadoop-3.2.2/share/hadoop/common/hadoop-common-3.2.2.jar

3.5、集群初始化:

注意:如果集群是第一次启动,需要在Namenode所在节点格式化NameNode,非第一次不用执行格式化Namenode操作!!

新版都用hdfs namenode命令,旧版用hadoop namenode

# 注意,只能执行一次,后面再执行会破坏之前的集群环境
hdfs namenode -format

初始化成功后,输出日志里会显示”successfully formatted”

3.6、启动集群:

方式一:手动一个个服务启动:

启动HDFS:

在master上启动NameNode

[root@dev-spark-master-206 hadoop-3.2.2]# hadoop-daemon.sh start namenode

在master和slave节点,启动DataNode

在dev-spark-master-206上启动datanode

[root@dev-spark-master-206 hadoop-3.2.2]# hadoop-daemon.sh start datanode
# jps查看是否有namenode和datanode的进程
[root@dev-spark-master-206 hadoop-3.2.2]# jps

在dev-spark-slave-171上,启动datanode

[root@dev-spark-slave-171 ~]# hadoop-daemon.sh start datanode
# 查看是否有datanode的进程
[root@dev-spark-slave-171 ~]# jps

在dev-spark-slave-172上,启动datanode

[root@dev-spark-slave-172 ~]# hadoop-daemon.sh start datanode
# 查看是否有datanode进程
[root@dev-spark-slave-172 ~]# jps

Yarn集群单节点启动:

注意:NameNode和ResourceManger不是在同一台机器,不能在NameNode上启动 YARN,应该在ResouceManager所在的机器上启动YARN。

按照我们集群的规划,我们在dev-spark-slave-172上启动resourcemanager和nodemanager

[root@dev-spark-slave-172 ~]# yarn-daemon.sh start resourcemanager
[root@dev-spark-slave-172 ~]# yarn-daemon.sh start nodemanager
# 查看是否有 ResourceManager和 NodeManager进程
[root@dev-spark-slave-172 ~]# jps

在dev-spark-slave-171上启动nodemanager

[root@dev-spark-slave-171 ~]#  yarn-daemon.sh start nodemanager
# 查看是否有 NodeManager的进程
[root@dev-spark-slave-171 ~]# jps

在dev-spark-master-206上,启动nodemanager

[root@dev-spark-master-206 hadoop-3.2.2]#  yarn-daemon.sh start nodemanager
# jps查看是否有 NodeManager的进程
[root@dev-spark-master-206 hadoop-3.2.2]# jps

方式二:集群群起

在master节点执行start-dfs.sh命令,它会启动namenode,以及去workers文件中指定的节点中,启动datanode

在dev-spark-master-206上启动hdfs

# 不单个启动,集群启动
start-dfs.sh

在dev-spark-slave-172上启动yarn

[root@dev-spark-slave-172 ~]# start-yarn.sh

注意:NameNode和ResourceManger不是在同一台机器,不能在NameNode上启动 YARN,应该在ResouceManager所在的机器上启动YARN。

注意:如果启动报错

# start-dfs.sh
Starting namenodes on [dev-spark-master-206]
ERROR: Attempting to operate on hdfs namenode as root
ERROR: but there is no HDFS_NAMENODE_USER defined. Aborting operation.
Starting datanodes
ERROR: Attempting to operate on hdfs datanode as root
ERROR: but there is no HDFS_DATANODE_USER defined. Aborting operation.
Starting secondary namenodes [dev-spark-slave-172]
ERROR: Attempting to operate on hdfs secondarynamenode as root
ERROR: but there is no HDFS_SECONDARYNAMENODE_USER defined. Aborting operation.

对于start-dfs.sh和stop-dfs.sh文件,添加下列参数:

# vim sbin/start-dfs.sh
# 顶部加上下面的配置
#!/usr/bin/env bash
HDFS_DATANODE_USER=root
HADOOP_SECURE_DN_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root # vim sbin/stop-dfs.sh
#!/usr/bin/env bash
HDFS_DATANODE_USER=root
HADOOP_SECURE_DN_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root

对于start-yarn.sh和stop-yarn.sh文件,添加下列参数:

# vim sbin/start-yarn.sh
#!/usr/bin/env bash
YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root # vim sbin/stop-yarn.sh
#!/usr/bin/env bash
YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root

发送到其他节点:

rsync-script sbin/start-dfs.sh
rsync-script sbin/stop-dfs.sh
rsync-script sbin/start-yarn.sh
rsync-script sbin/stop-yarn.sh

再启动:(再启动之前,需要使用jps查看之前残存的进程,用kill杀掉)

# start-dfs.sh
WARNING: HADOOP_SECURE_DN_USER has been replaced by HDFS_DATANODE_SECURE_USER. Using value of HADOOP_SECURE_DN_USER.
Starting namenodes on [dev-spark-master-206]
Last login: Wed Sep 8 15:05:01 CST 2021 from 192.168.90.188 on pts/6
Starting datanodes
Last login: Wed Sep 8 15:37:52 CST 2021 on pts/5
Starting secondary namenodes [dev-spark-slave-172]
Last login: Wed Sep 8 15:37:54 CST 2021 on pts/5
dev-spark-slave-172: WARNING: /data/apps/hadoop-3.2.2/logs does not exist. Creating.

启动yarn:

注意:NameNode和ResourceManger不是在同一台机器,不能在NameNode上启动 YARN,应该

在ResouceManager所在的机器上启动YARN。

# 在dev-spark-slave-172上面启动yarn
start-yarn.sh

3.7、Hadoop集群启动停止命令汇总
1. 各个服务组件逐一启动/停止
(1)分别启动/停止HDFS组件

hadoop-daemon.sh start / stop namenode / datanode / secondarynamenode

(2)启动/停止YARN

yarn-daemon.sh start / stop resourcemanager / nodemanager

2. 各个模块分开启动/停止(配置ssh是前提)常用
(1)整体启动/停止HDFS

start-dfs.sh / stop-dfs.sh

(2)整体启动/停止YARN

start-yarn.sh / stop-yarn.sh

3.8、web ui界面查看

web页面查看:http://192.168.90.206:9870/

查看yarn:(注意地址是:192.168.90.172)

http://192.168.90.172:8088/

3.9、测试hdfs:

[root@dev-spark-master-206 ~]# hdfs dfs -mkdir -p /test/input
[root@dev-spark-master-206 ~]# echo "test hdfs" >> test.txt
[root@dev-spark-master-206 ~]# hdfs dfs -put test.txt /test/input
[root@dev-spark-master-206 ~]# hdfs dfs -ls /test/input
Found 1 items
-rw-r--r-- 3 root supergroup 10 2021-09-08 16:53 /test/input/test.txt

web界面上有看到相关文件:

4、配置历史服务器

在Yarn中运行的任务产生的日志数据不能查看,为了查看程序的历史运行情况,需要配置一下历史日志

服务器。具体配置步骤如下:

4.1. 配置mapred-site.xml

# cd /data/apps/hadoop-3.2.2/etc/hadoop/
# vi mapred-site.xml <!-- 历史服务器端地址 -->
<property>
<name>mapreduce.jobhistory.address</name>
<value>dev-spark-master-206:10020</value>
</property>
<!-- 历史服务器web端地址 -->
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>dev-spark-master-206:19888</value>
</property>

4.2、配置日志的聚集

日志聚集:应用(Job)运行完成以后,将应用运行日志信息从各个task汇总上传到HDFS系统上。

日志聚集功能好处:可以方便的查看到程序运行详情,方便开发调试。

注意:开启日志聚集功能,需要重新启动NodeManager 、ResourceManager和 HistoryManager。

开启日志聚集功能具体步骤如下:

配置yarn-site.xml

vim yarn-site.xml

<!-- 日志聚集功能使能 -->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!-- 日志保留时间设置7天 -->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>604800</value>
</property>
<property>
<name>yarn.log.server.url</name>
<value>http://dev-spark-master-206:19888/jobhistory/logs</value>
</property>

4.3、分发配置到其他节点:

rsync-script mapred-site.xml
rsync-script yarn-site.xml

4.4、启动history server

# 重启yarn
[root@dev-spark-slave-172 logs]# stop-yarn.sh
[root@dev-spark-slave-172 logs]# start-yarn.sh # 启动历史服务器:
[root@dev-spark-master-206 hadoop]# mapred --daemon start historyserver

4.5、web页面查看:

查看地址:http://192.168.90.206:19888/jobhistory

5、测试wordcount

创建wc.txt文件

# vim wc.txt
hadoop mapreduce yarn
hdfs hadoop mapreduce
mapreduce yarn hello
hello
hello

上传到hdfs:/text/input目录

# 如果目录不存在,需要先创建
hdfs dfs -mkdir -p /test/input
# 上传
hdfs dfs -put wc.txt /test/input
# 查看是否上传成功
hdfs dfs -ls /test/input

执行WordCount程序

hadoop jar /data/apps/hadoop-3.2.2/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.2.jar wordcount /test/input/wc.txt /wcoutput

运行成功,查看结果:

[root@dev-spark-master-206 hadoop]# hdfs dfs -ls /wcoutput
Found 2 items
-rw-r--r-- 3 root supergroup 0 2021-09-08 17:20 /wcoutput/_SUCCESS
-rw-r--r-- 3 root supergroup 43 2021-09-08 17:20 /wcoutput/part-r-00000
[root@dev-spark-master-206 hadoop]# hdfs dfs -ls /wcoutput/part-r-00000
-rw-r--r-- 3 root supergroup 43 2021-09-08 17:20 /wcoutput/part-r-00000
[root@dev-spark-master-206 hadoop]# hdfs dfs -cat /wcoutput/part-r-00000
hadoop 2
hdfs 1
hello 3
mapreduce 3
yarn 2

web页面查看历史服务器:http://192.168.90.206:19888/jobhistory

点击logs可以查看详情:

日志详情如下:

Spark集群环境搭建——Hadoop集群环境搭建的更多相关文章

  1. Linux环境下Hadoop集群搭建

    Linux环境下Hadoop集群搭建 前言: 最近来到了武汉大学,在这里开始了我的研究生生涯.昨天通过学长们的耐心培训,了解了Hadoop,Hdfs,Hive,Hbase,MangoDB等等相关的知识 ...

  2. 环境搭建-Hadoop集群搭建

    环境搭建-Hadoop集群搭建 写在前面,前面我们快速搭建好了centos的集群环境,接下来,我们就来开始hadoop的集群的搭建工作 实验环境 Hadoop版本:CDH 5.7.0 这里,我想说一下 ...

  3. 在搭建Hadoop集群环境时遇到的一些问题

    最近在学习搭建hadoop集群环境,在搭建的过程中遇到很多问题,在这里做一些记录.1. SSH相关的问题 问题一: ssh: connect to host localhost port 22: Co ...

  4. 使用Docker搭建Hadoop集群(伪分布式与完全分布式)

    之前用虚拟机搭建Hadoop集群(包括伪分布式和完全分布式:Hadoop之伪分布式安装),但是这样太消耗资源了,自学了Docker也来操练一把,用Docker来构建Hadoop集群,这里搭建的Hado ...

  5. virtualbox 虚拟3台虚拟机搭建hadoop集群

    用了这么久的hadoop,只会使用streaming接口跑任务,各种调优还不熟练,自定义inputformat , outputformat, partitioner 还不会写,于是干脆从头开始,自己 ...

  6. 搭建Hadoop集群 (三)

    通过 搭建Hadoop集群 (二), 我们已经可以顺利运行自带的wordcount程序. 下面学习如何创建自己的Java应用, 放到Hadoop集群上运行, 并且可以通过debug来调试. 有多少种D ...

  7. 搭建Hadoop集群 (一)

    上面讲了如何搭建Hadoop的Standalone和Pseudo-Distributed Mode(搭建单节点Hadoop应用环境), 现在我们来搭建一个Fully-Distributed Mode的 ...

  8. 搭建Hadoop集群 (二)

    前面的步骤请看  搭建Hadoop集群 (一) 安装Hadoop 解压安装 登录master, 下载解压hadoop 2.6.2压缩包到/home/hm/文件夹. (也可以从主机拖拽或者psftp压缩 ...

  9. Linux下搭建Hadoop集群

    本文地址: 1.前言 本文描述的是如何使用3台Hadoop节点搭建一个集群.本文中,使用的是三个Ubuntu虚拟机,并没有使用三台物理机.在使用物理机搭建Hadoop集群的时候,也可以参考本文.首先这 ...

随机推荐

  1. [转]DDR3基础知识介绍

    本文转自:(4条消息) xilinx ddr3 MIG ip核使用详解_admiraion123的博客-CSDN博客 1,DDR3基本内容介绍1.1,DDR3简介DDR3全称double-data-r ...

  2. redis 集群环境搭建

    原理: 1,每个Redis群集的节点都需要打开两个TCP连接,由于这两个连接就需要两个端口,分别是用于为客户端提供服务的常规Redis TCP命令端口(例如6379)以及通过将10000和命令端口相加 ...

  3. Win powershell执行策略配置

    参考连接:https://blog.csdn.net/jeffxu_lib/article/details/84710386 参考连接:http://www.cragsman.org/index.ph ...

  4. MySQL新建用户并赋予权限:解决命令行与Navicat展示数据库不一致问题

    1.创建新用户 'xiaoxiao'密码'123456' mysql> CREATE USER 'xiaoxiao'@'localhost' IDENTIFIED BY '123456'; 2. ...

  5. 热门剧本杀与 SaaS 的不解之缘

    近年来,"剧本杀"这种以剧本为核心,玩家分别扮演不同角色推理案情找出真凶的娱乐项目在年轻人的范围内迅速传开,已悄然形成了一个市场规模超百亿的新兴产业,吸引了大量淘金者.而在互联网时 ...

  6. MacOS修复TNT和谐软件运行崩溃、闪退问题

    因为Apple删除了TNT的证书,因此部分应用程序出现了打开崩溃的情况. 目前的解决方案是自己更改签名. 第一种方法: 在终端中运行以下命令:(注意:name.app就是需要更改签名的程序) sudo ...

  7. Java——去掉小数点后面多余的0

    当小数点后位数过多,多余的0没有实际意义,根据业务需求需要去掉多余的0.后端存储浮点型数据一般会用到Bigdecimal 类型,可以调用相关方法去掉小数后多余0,然后转为string. public ...

  8. js 事件流和事件冒泡阻止

    js 事件流和事件冒泡阻止 事件流 当浏览器发展到第四代的时候(IE4与Netscape4)浏览器开发团队遇到一个有意思的的问题: 页面的哪一部分会拥有某个特定的事件? 比如在纸上画上一组同心圆,如果 ...

  9. Django笔记&教程 6-2 表单(Form)基础操作

    Django 自学笔记兼学习教程第6章第2节--表单(Form)基础操作 点击查看教程总目录 1 - 编写表单类 创建新的表单类的代码,一般写到一个专门的forms.py文件中(一般放在对应的app文 ...

  10. [hdu6326]Monster Hunter

    考虑树是以1为中心的菊花图的情况,也即如何安排打怪兽的顺序 用二元组$(a,b)$来描述怪兽,则对于两个怪兽$(a_{1},b_{1})$和$(a_{2},b_{2})$,交换两者不会影响血量的变化量 ...