curse of dimensionality

  • 输入在p维立方体中符合均匀分布,如果需要覆盖比例r的体积,需要每个维度上\(e_p(r)=r^{1/p}\)

    \(e_{10}(0.01)=0.63,e_{10}(0.1)=0.8\)
  • 输入在p维立方体中负荷均匀分布,p=1时,1000个点达到的采样密度

    在p=10时,需要\(1000^{10}\)个点才能达到

    需要的数据量随维度增加幂增长
  • 输入在p维单位球体中符合均匀分布,使用1-nearest neighbor预测0点的値

    假设有N个训练数据,则这些点到0点距离的中値为

    \(d(p,N)={(1-{(1/2)}^{1/N})}^{1/p}\)

    $ d(10, 500) ≈ 0.52$

    当维度高,数据量小时,最近邻离预测点往往比较远,所以得到的预测偏差大

证明:

p维,半径为r的球体体积为\(V_p(r)=\frac{\pi^{p/2}}{\Gamma(1+p/2)}r^p\)

N个点都在半径为d的球体外的概率为对应部分体积之比\(p(D>d)={(1-d^p)}^N\)

取\(p(D>d)=1/2\),\(d(p,N)={(1-{(1/2)}^{1/N})}^{1/p}\)

  • 1000个训练数据均匀分布在\({[-1,1]}^p\)中,真实\(Y\)和\(X\)的关系,符合以下函数:

    \(Y=f(X)=e^{-8{||x||}^2}\),使用1-nearest neighbor预测在0点的値

    进行bias–variance decomposition

    平均平方误差可以分成在训练集\(\tau\)上的方差,以及模型本身的偏差平方

p = 10时,99%的训练集最近邻离0点的距离都大于0.5

证明:

\(p(D>0.5)={\left(1-\frac{\frac{\pi^{10/2}}{\Gamma(1+10/2)}{0.5}^{10}}{2^{10}}\right)}^{1000}≈0.99757\)

import python
math.pow(1-math.pow(math.pi,5)/120/math.pow(4,10),1000)
figure2.7 **_bais占主要,因为最近邻离的远,函数中有距离项_**

每次训练集采样,得到的最近邻离0点距离差别不大

figure2.8 将函数换成$f(X)={(X_1+1)}^3/2$,Y値只与第一个维度相关

'''
2.5<Local Methods in High Dimensions>
page 25(figure2.7),26(figure2.8)
function2.7 is f(x)=e^{-8||x||^2}
function2.8 is f(x)=(x_1+1)^3/2
x is uniformally distributed in [-1,1]^p ,p is the dimension
MSE,VARIANCE,BAIS is about f(0)
so for function2.7 f0=1
function2.8 f0=0.5
'''
import numpy as np
import matplotlib.pyplot as plt
def func2_7(X):
return np.array([np.exp(-8*np.dot(i,i)) for i in X])
def func2_8(X):
return np.array([np.power(i[0]+1,3)/2.0 for i in X])
def mse_var_bais(N,T,p,func1,f0):
X = np.zeros((T,p))
for i in range(T):
dt = np.random.uniform(-1,1,N*p).reshape((N,p))
st = [np.dot(j,j) for j in dt]
ind = (st==np.min(st))
#get the nearest neighbor
X[i,:] = dt[ind,:]
arr = func1(X)
mse = np.mean(np.power((arr - f0),2))
var = np.mean(np.power(arr - np.mean(arr),2))
bais = np.power(np.mean(arr)-f0,2)
return mse,var,bais
def getMSE_VAR_BAIS(N,T,f0,func1):
VAR = []
BAIS = []
MSE = []
for i in range(10):
mse,var,bais=mse_var_bais(N,T,i+1,func1,f0)
MSE.append(mse)
VAR.append(var)
BAIS.append(bais)
print i+1
return MSE,BAIS,VAR
#MSE,BAIS,VAR =getMSE_VAR_BAIS(N=1000,T=1000,f0=1,func1=func2_7)
MSE,BAIS,VAR =getMSE_VAR_BAIS(N=1000,T=1000,f0=0.5,func1=func2_8)
xa=[i+1 for i in range(10)]
plt.plot(xa,MSE,'ro-',label='MSE')
plt.plot(xa,BAIS,'bo-',label='sq. BAIS')
plt.plot(xa,VAR,'go-',label='VAR')
plt.legend(loc='upper left')
plt.show()

2.5 Local Methods in High Dimensions的更多相关文章

  1. 26 THINGS I LEARNED IN THE DEEP LEARNING SUMMER SCHOOL

    26 THINGS I LEARNED IN THE DEEP LEARNING SUMMER SCHOOL In the beginning of August I got the chance t ...

  2. 反射01 Class类的使用、动态加载类、类类型说明、获取类的信息

    0 Java反射机制 反射(Reflection)是 Java 的高级特性之一,是框架实现的基础. 0.1 定义 Java 反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对 ...

  3. Microsoft.AspNet.SignalR 2.2

    Nuget :http://www.nuget.org/packages/Microsoft.AspNet.SignalR/ What is SignalR? ASP.NET SignalR is a ...

  4. Spring Annotation Processing: How It Works--转

    找的好辛苦呀 原文地址:https://dzone.com/articles/spring-annotation-processing-how-it-works If you see an annot ...

  5. REST vs SOAP

    REST vs SOAP These information searched from internet most from stackoverflow. Simple explanation ab ...

  6. ABAP程序执行效率和优化 ABAP Performance Examples

    一.             SQL Interface1.         Select ... Where vs. Select + Check用Select … Where语句效率比Select ...

  7. Introduction to SignalR -摘自网络

    What is SignalR? ASP.NET SignalR is a library for ASP.NET developers that simplifies the process of ...

  8. Web Services and C# Enums -摘自网络

    Web Service Transparency .NET support for web services is excellent in creating illusion of transpar ...

  9. C#基础拾遗系列之二:C#7.0新增功能点

    第一部分: C#是一种通用的,类型安全的,面向对象的编程语言.有如下特点: (1)面向对象:c# 是面向对象的范例的一个丰富实现, 它包括封装.继承和多态性.C#面向对象的行为包括: 统一的类型系统 ...

随机推荐

  1. scheme递归

    主要参考: http://www.shido.info/lisp/scheme7_e.html Function fact that calculates factorials. (define (f ...

  2. LeeCode-Two Sum

    Given an array of integers, find two numbers such that they add up to a specific target number. The ...

  3. ZOJ 1008 Gnome Tetravex(DFS)

    Gnome Tetravex Time Limit: 10 Seconds      Memory Limit: 32768 KB Hart is engaged in playing an inte ...

  4. canvas.js | CLiPS

    canvas.js | CLiPS canvas.js The canvas.js module is a simple and robust JavaScript API for the HTML5 ...

  5. HTML5 Canvas Arc Tutorial

    HTML5 Canvas Arc Tutorial HTML5 Canvas Arc Tutorial  

  6. 【转】Linux内核调试方法总结

    目录[-] 一  调试前的准备 二  内核中的bug 三  内核调试配置选项 1  内核配置 2  调试原子操作 四  引发bug并打印信息 1  BUG()和BUG_ON() 2  dump_sta ...

  7. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  8. Android系统Surface机制的SurfaceFlinger服务的启动过程分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/8022957 在前面一篇文章中,我们简要介绍了A ...

  9. sqlplus常用操作命令2

    常用编辑命令:A[ppend] text 将text附加到当前行之后C[hange] /old /new 将当前行中的old替换为newCLear] buff[er] 清除缓冲区中的所有行DEL 删除 ...

  10. 【计算几何初步-线段相交+并查集】【HDU1558】Segment set

    Segment set Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...