描述

求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解。

格式

输入格式

输入只有一行,包含两个正整数a, b,用一个空格隔开。

输出格式

输出只有一行,包含一个正整数x0,即最小正整数解。输入数据保证一定有解。

样例1

样例输入1[复制]

 
3 10

样例输出1[复制]

 
7

限制

每个测试点1s

提示

对于40%的数据,2 ≤b≤ 1,000; 
对于60%的数据,2 ≤b≤ 50,000,000; 
对于100%的数据,2 ≤a, b≤ 2,000,000,000。

来源

Noip2012提高组复赛Day2T1

 
又是复习题……练练exgcd
感觉这么水的题发上去显得我很没有水平
算了……反正我也确实没水平
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int a,b,x,y;
inline int gcd(int a,int b)
{
if (!b)return a;
return gcd(b,a%b);
}
inline void exgcd(int a,int b,int &x,int &y)
{
if (!b){x=1;y=0;return;}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*y;
}
int main()
{
a=read();b=read();
exgcd(a,b,x,y);
x=(x%b+b)%b;
printf("%d\n",x);
}

  

vijos1781 同余方程的更多相关文章

  1. NOIP2012同余方程[exgcd]

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整 ...

  2. NOIP2012同余方程

    描述 求关于 x的同余方程  ax ≡ 1(mod b) 的最小正整数解. 输入格式 输入文件 mod.in输入只有一行,包含两个正整数a,b,用一个空格隔开. 输出格式 输出文件 为 modmod  ...

  3. [NOIP2012] 提高组 洛谷P1082 同余方程

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

  4. POJ 1061 同余方程

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是 它们出发之前忘记了一件很重要的事情,既没有问清楚对方的 ...

  5. NOIP2012 同余方程-拓展欧几里得

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

  6. 数论 - n元线性同余方程的解法

    note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m       ...

  7. 【codevs1200】 NOIP2012—同余方程

    codevs.cn/problem/1200/ (题目链接) 题意 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. Solution 这道题其实就是求${a~mod~b}$的逆元 ...

  8. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  9. 洛谷P1082 同余方程

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

随机推荐

  1. MVC4.0 上传Excel并存入数据库

    这里的这个功能实现在WebForm很好实现,上传阶段简单的一个FileUoLoad控件就搞定了,什么取值,什么上传都是浮云,微软都帮我们封装好了,我们只需要一拖一拽就OK了,但这些在MVC中是不行的! ...

  2. cf493C Vasya and Basketball

    C. Vasya and Basketball time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. [HEOI 2013 day2] SAO (树形动态规划)

    题目大意 给一棵N个节点的有向树(N <= 1000),求其拓扑序列个数. 思路 我们将任意一个点作为根,用dp[i][j]表示以节点i为根的子树满足节点i在第j个位置上的拓扑序列的个数.在求节 ...

  4. Android Studio:Unable to add window android.view.ViewRootImpl$W@5e2d85a -- permission denied for this window 第一行代码

    学习<第一行代码>的时候,出现的错误. java.lang.RuntimeException: Unable to start receiver com.example.sevenun.l ...

  5. Linux更换python版本 (转载)

    安装完CentOS6.5(Final)后,执行#Python与#python -V,看到版本号是2.6,而且之前写的都是跑在python3.X上面的,3.X和2.X有很多不同,有兴趣的朋友可以参考下这 ...

  6. Codeforces554C:Kyoya and Colored Balls(组合数学计算+费马小定理)

    题意: 有k种颜色,每种颜色对应a[i]个球,球的总数不超过1000 要求第i种颜色的最后一个球,其后面接着的必须是第i+1种颜色的球 问一共有多少种排法 Sample test(s) input o ...

  7. iOS7状态栏字体颜色修改

    iOS7中,默认的状态栏字体颜色是黑色的,如何修改为其它颜色呢? 1.在项目的*info.plist中增加 View controller-based status bar appearance 属性 ...

  8. 关于背景透明,文字不透明的最佳方法,兼容IE

    以背景黑色,透明度0.5举例 非IE:background:rgba(0,0,0,0.5); IE:filter:progid:DXImageTransform.Microsoft.gradient( ...

  9. 区间DP(初步了解)

    区间动态规划问题一般都是考虑.对于每段区间,他们的最优值都 是由几段更小区间的最优值得到,是分治思想的一种应用,将一个区间 问题不断划分更小的区间直至一个元素组成的区间,枚举他们的组合  .求合并后的 ...

  10. 单例模式(Singleton)详解——转载

    单例模式(Singleton) 首先来明确一个问题,那就是在某些情况下,有些对象,我们只需要一个就可以了, 比如,一台计算机上可以连好几个打印机,但是这个计算机上的打印程序只能有一个, 这里就可以通过 ...