Lifting the Stone(hdoj1115)
Lifting the Stone
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6104 Accepted Submission(s):
2546
covered by a big heavy stone. When the stone is lifted up, a special mechanism
detects this and activates poisoned arrows that are shot near the opening. The
only possibility is to lift the stone very slowly and carefully. The ACM team
must connect a rope to the stone and then lift it using a pulley. Moreover, the
stone must be lifted all at once; no side can rise before another. So it is very
important to find the centre of gravity and connect the rope exactly to that
point. The stone has a polygonal shape and its height is the same throughout the
whole polygonal area. Your task is to find the centre of gravity for the given
polygon.
(T) is given on the first line of the input file. Each test case begins with a
line containing a single integer N (3 <= N <= 1000000) indicating the
number of points that form the polygon. This is followed by N lines, each
containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are
the coordinates of the i-th point. When we connect the points in the given
order, we get a polygon. You may assume that the edges never touch each other
(except the neighboring ones) and that they never cross. The area of the polygon
is never zero, i.e. it cannot collapse into a single line.
should contain exactly two numbers separated by one space. These numbers are the
coordinates of the centre of gravity. Round the coordinates to the nearest
number with exactly two digits after the decimal point (0.005 rounds up to
0.01). Note that the centre of gravity may be outside the polygon, if its shape
is not convex. If there is such a case in the input data, print the centre
anyway.
算法一:在讲该算法时,先要明白下面几个定理。
定理1 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。它的重心坐标为:
xg = (x1+x2+x3) / 3 ; yg = (y1+y2+y3) / 3 ;
定理2 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。该三角形的面积为:
S = ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;
△A1A2A3 边界构成逆时针回路时取+ , 顺时针时取 -。
另外在求解的过程中,不需要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。
原理:将多边形划分成n个小区域, 每个小区域面积为σi ,重心为Gi ( . xi , . yi ) ,利用求平面薄板重心公式把积分变
成累加和:
由前面所提出的原理和数学定理可以得出求离散数据点所围多边形的一般重心公式:以Ai ( xi , yi ) ( i = 1, 2, ., n) 为顶点的任意N边形A1A2 .An ,将它划 分成N - 2个三角形(如图1) 。每个三角形的重心为Gi ( . xi , . yi ) ,面积为σi。那么多边形的重心坐标G( .x2, .y2) 为:
图1 多边形分解
#include<cstdio>
#include<iostream>
using namespace std;
int main()
{
int T;
double ss,S,SX,SY;
double x,y;
double x0,y0,X,Y;
int n,i;
// freopen("in.txt","r",stdin);
cin>>T;
while(T--)
{
S=,SX=,SY=;
scanf("%d%lf%lf%lf%lf",&n,&x0,&y0,&X,&Y);
for(i=;i<n;i++)
{
scanf("%lf%lf",&x,&y);
ss=( (X - x0) * (y - y0) - (x -x0) * (Y - y0) ) / ;
S+=ss;
SX+=ss*(x0+x+X);
SY+=ss*(y0+Y+y);
X=x,Y=y;
}
printf("%.2f %.2f\n",SX/S/,SY/S/);
}
return ;
}
Lifting the Stone(hdoj1115)的更多相关文章
- [POJ 1385] Lifting the Stone (计算几何)
题目链接:http://poj.org/problem?id=1385 题目大意:给你一个多边形的点,求重心. 首先,三角形的重心: ( (x1+x2+x3)/3 , (y1+y2+y3)/3 ) 然 ...
- Lifting the Stone(求多边形的重心—)
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu1115 Lifting the Stone(几何,求多边形重心模板题)
转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...
- POJ 1385 Lifting the Stone (多边形的重心)
Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...
- HDU 4764 Stone(博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4764 题目大意:Tang和Jiang玩石子游戏,给定n个石子,每次取[1,k]个石子,最先取完的人失败 ...
- Stone(思维)
链接:https://ac.nowcoder.com/acm/contest/893/D来源:牛客网 题目描述 有n堆石子排成一排,第i堆石子有aiai个石子. 每次,你可以选择任意相邻的两堆石子进行 ...
- POJ 1740 A New Stone Game(博弈)题解
题意:有n个石子堆,每一个都可以轮流做如下操作:选一个石堆,移除至少1个石子,然后可以把这堆石子随便拿几次,随便放到任意的其他石子数不为0的石子堆,也可以不拿.不能操作败. 思路:我们先来证明,如果某 ...
- 【BZOJ2138】stone(线段树,Hall定理)
[BZOJ2138]stone(线段树,Hall定理) 题面 BZOJ 题解 考虑一个暴力. 我们对于每堆石子和每个询问,显然是匹配的操作. 所以可以把石子拆成\(a_i\)个,询问点拆成\(K_i\ ...
随机推荐
- mysql 关键字bug
今天运行语句 select * from order; 出现bug: ERROR 1064 (42000): You have an error in your SQL syntax; check t ...
- H5本地存储
在HTML5中可以把数据长期存储在客户端,使用的对象就是localStorage. localStorage常用方法有setItem.getItem.removeItem.clear. 下面是一个存储 ...
- socket.setNoDelay([noDelay]) 用的是Nagle算法
Nagle算法是以他的发明人John Nagle的名字命名的,它用于自动连接许多的小缓冲器消息:这一过程(称为nagling)通过减少必须发送包的个数来增加网络软件系统的效率.Nagle算法于1984 ...
- 运行时数据区即内存分配管理——JVM之六
内存分配结构,请参考: http://iamzhongyong.iteye.com/blog/1333100
- 基于jeasyui的遮罩扩展[修复链式bug]
说明和使用方法看下面代码,直接复制下面代码保存为js文件,引用即可. 遮罩效果从datagrid中提取,针对jquery进行优化. 下载地址(附Demo):http://pan.baidu.com/s ...
- spring3.0事务的配置
第一种配置方法:基于XML的事务管理 这种方法不需要对原有的业务做任何修改,通过在XML文件中定义需要拦截方法的匹配即可完成配置,要求是,业务处理中的方法的命名要有规律,比如setXxx,xxxUpd ...
- Java 获取Linux 的IP地址
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import ...
- [破解] DRM-内容数据版权加密保护技术学习(上):视频文件打包实现
1. DRM介绍: DRM,英文全称Digital Rights Management, 可以翻译为:内容数字版权加密保护技术. DRM技术的工作原理是,首先建立数字节目授权中心.编码压缩后的数字节目 ...
- UML图总结
UML叙述 UML文档仅仅是设计与开发人员采用UML语言进行系统分析与设计的结果,并没有给出如何进行开发和采用何种开发流程,同样也不指导如何进行面向对象设计. UML文档描述了面向对象分析与设计的结果 ...
- [Exception] 当前 TransactionScope 已完成
本文来自:http://www.cnblogs.com/loafer/archive/2010/06/03/TransactionScopeComplete.html 捕获异常的时候 经常会碰到这个异 ...