Problem Description

A robot has been programmed to follow the instructions in its path. Instructions for the next direction the robot is to move are laid down in a grid. The possible instructions are 
N north (up the page) S south (down the page) E east (to the right on the page) W west (to the left on the page)
For example, suppose the robot starts on the north (top) side of Grid 1 and starts south (down). The path the robot follows is shown. The robot goes through 10 instructions in the grid before leaving the grid.
Compare what happens in Grid 2: the robot goes through 3 instructions only once, and then starts a loop through 8 instructions, and never exits.
You are to write a program that determines how long it takes a robot to get out of the grid or how the robot loops around.
 
Input
There will be one or more grids for robots to navigate. The data for each is in the following form. On the first line are three integers separated by blanks: the number of rows in the grid, the number of columns in the grid, and the number of the column in which the robot enters from the north. The possible entry columns are numbered starting with one at the left. Then come the rows of the direction instructions. Each grid will have at least one and at most 10 rows and columns of instructions. The lines of instructions contain only the characters N, S, E, or W with no blanks. The end of input is indicated by a row containing 0 0 0.
 
Output
For each grid in the input there is one line of output. Either the robot follows a certain number of instructions and exits the grid on any one the four sides or else the robot follows the instructions on a certain number of locations once, and then the instructions on some number of locations repeatedly. The sample input below corresponds to the two grids above and illustrates the two forms of output. The word "step" is always immediately followed by "(s)" whether or not the number before it is 1.
 
Sample Input
3 6 5
NEESWE
WWWESS
SNWWWW
4 5 1
SESWE
EESNW
NWEEN
EWSEN
0 0
 
Sample Output
10 step(s) to exit
3 step(s) before a loop of 8 step(s)
 
Source
 

模拟题

AC代码:

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 16
#define inf 1e12
int n,m,st;
char mp[N][N];
int vis[N][N];
bool judge(int i,int j){
if(i< || i>=n || j< || j>=m) return true;
return false;
}
int main()
{
while(scanf("%d%d",&n,&m)==){
if(n== && m==) break;
memset(vis,,sizeof(vis));
memset(mp,'\0',sizeof(mp));
scanf("%d",&st);
st--;
for(int i=;i<n;i++){
scanf("%s",mp[i]);
}
/*for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
printf("%c",mp[i][j]);
}
}
*/ int i=,j=st;
int ans=;
int loops=-;
int L;
//vis[i][j]=1;
while(){
if(mp[i][j]=='W' && vis[i][j]==){
vis[i][j]=ans;
j--; //printf("%d %d\n",i,j);
}else if(mp[i][j]=='E' && vis[i][j]==){
vis[i][j]=ans;
j++;
//printf("%d %d\n",i,j); }else if(mp[i][j]=='N' && vis[i][j]==){
vis[i][j]=ans;
i--;
//printf("%d %d\n",i,j); }else if(mp[i][j]=='S' && vis[i][j]==){
vis[i][j]=ans;
i++;
//printf("%d %d\n",i,j); }
else if(vis[i][j]){
ans--;
loops = ans-vis[i][j]+;
L = vis[i][j];
break;
} else if(judge(i,j)){
//printf("%d %d\n",i,j);
ans--;
break;
}
ans++;
} if(loops==-){
printf("%d step(s) to exit\n",ans);
}else{
printf("%d step(s) before a loop of %d step(s)\n",L-,loops);
} }
return ;
}

hdu 1035 Robot Motion(模拟)的更多相关文章

  1. [ACM] hdu 1035 Robot Motion (模拟或DFS)

    Robot Motion Problem Description A robot has been programmed to follow the instructions in its path. ...

  2. HDOJ(HDU).1035 Robot Motion (DFS)

    HDOJ(HDU).1035 Robot Motion [从零开始DFS(4)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DF ...

  3. HDU 1035 Robot Motion(dfs + 模拟)

    嗯... 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1035 这道题比较简单,但自己一直被卡,原因就是在读入mp这张字符图的时候用了scanf被卡. ...

  4. hdu 1035 Robot Motion(dfs)

    虽然做出来了,还是很失望的!!! 加油!!!还是慢慢来吧!!! >>>>>>>>>>>>>>>>> ...

  5. 题解报告:hdu 1035 Robot Motion(简单搜索一遍)

    Problem Description A robot has been programmed to follow the instructions in its path. Instructions ...

  6. (step 4.3.5)hdu 1035(Robot Motion——DFS)

    题目大意:输入三个整数n,m,k,分别表示在接下来有一个n行m列的地图.一个机器人从第一行的第k列进入.问机器人经过多少步才能出来.如果出现了循环 则输出循环的步数 解题思路:DFS 代码如下(有详细 ...

  7. hdoj 1035 Robot Motion

    Robot Motion Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  8. HDU 1035(走迷宫 模拟)

    题意是给定初始位置在一个迷宫中按照要求前进,判断多少步能离开迷宫或者多少步会走入一个长达多少步的循环. 按要求模拟前进的位置,对每一步在 vis[ ] 数组中进行已走步数的记录,走出去或走到已走过的位 ...

  9. POJ 1573 Robot Motion 模拟 难度:0

    #define ONLINE_JUDGE #include<cstdio> #include <cstring> #include <algorithm> usin ...

随机推荐

  1. bzoj1622 [Usaco2008 Open]Word Power 名字的能量

    Description     约翰想要计算他那N(1≤N≤1000)只奶牛的名字的能量.每只奶牛的名字由不超过1000个字待构成,没有一个名字是空字体串,  约翰有一张“能量字符串表”,上面有M(1 ...

  2. GNU C - 关于8086的内存访问机制以及内存对齐(memory alignment)

    一.为什么需要内存对齐? 无论做什么事情,我都习惯性的问自己:为什么我要去做这件事情? 是啊,这可能也是个大家都会去想的问题, 因为我们都不能稀里糊涂的或者.那为什么需要内存对齐呢?这要从cpu的内存 ...

  3. Invert Binary Tree 解答

    Quetion Invert a binary tree. 4 / \ 2 7 / \ / \ 1 3 6 9 to 4 / \ 7 2 / \ / \ 9 6 3 1 Solution 1 -- R ...

  4. 【转】android电池(五):电池 充电IC(PM2301)驱动分析篇

    关键词:android 电池  电量计  PL2301任务初始化宏 power_supply 中断线程化 平台信息:内核:linux2.6/linux3.0系统:android/android4.0  ...

  5. zoj 3471 Most Powerful(状态压缩dp)

    Recently, researchers on Mars have discovered N powerful atoms. All of them are different. These ato ...

  6. Mac 下纯lua(一)

    Lua 介绍 什么是lua - lua是一种跨平台开发脚本语言. Lua 历史 学校 University of Rio de Janeiro 国家 巴西 作者 Roberto Ierusalimsc ...

  7. VF(动态规划)

    VF 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描述 Vasya is the beginning mathematician. He decided to make a ...

  8. Int16 Int32 Int64

    数据类型占多大空间 Int16, 等于short, 占2个字节. -32768 32767 Int32, 等于int, 占4个字节. -2147483648 2147483647 Int64, 等于l ...

  9. Swift Strings and Characters

    String 是一个有序的字符集合,例如 "hello, world", "albatross".Swift 字符串通过 String 类型来表示,也可以表示为 ...

  10. javascript模式——Decorator

    Decorator 模式是一种结构型模式,他意在促进代码的复用,是塑造子类的一个方式. 这种想法是基于,新增的属性,对于对象来说不是必须的基本功能.我们为特殊的对象添加自己的方法,而不是重新创建一个类 ...