一.第二类Stirling数

定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数。

证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的是什么,而不管哪个盒子装了什么。

递推公式有:S(p,p)=1 (p>=0)         S(p,0)=0  (p>=1)         S(p,k)=k*S(p-1,k)+S(p-1,k-1)   (1<=k<=p-1) 。考虑将前p个正整数,1,2,.....p的集合作为要被划分的集合,把

{1,2,.....p}分到k个非空且不可区分的盒子的划分有两种情况:

(1)那些使得p自己单独在一个盒子的划分,存在有S(p-1,k-1)种划分个数

(2)那些使得p不单独自己在一个盒子的划分,存在有 k*S(p-1,k)种划分个数

考虑第二种情况,p不单独自己在一个盒子,也就是p和其他元素在一个集合里面,也就是说在没有放p之前,有p-1个元素已经分到了k个非空且不可区分的盒子里面(划

分个数为S(p-1,k),那么现在问题是把p放在哪个盒子里面呢,有k种选择,所以存在有k*S(p-1,k)。

模板:

注意:要用long long类型,当元素个数>20,就超int类型了。

扩展:k! *S(p,k) 计数的是把p元素集合划分到k个可区分的盒子里且没有空盒子的划分个数。

二.Bell数

定理:Bell数B(p)是将p元素集合分到非空且不可区分盒子的划分个数(没有说分到几个盒子里面)。

B(p)=S(p,0)+S(p,1)+.....+S(p,k)

所以要求Bell数就要先求出第二类Stiring数。

三.第一类Stirling数

定理:第一类Stirling数s(p,k)计数的是把p个对象排成k个非空循环排列的方法数。

证明:把上述定理叙述中的循环排列叫做圆圈。递推公式为:

s(p,p)=1 (p>=0)    有p个人和p个圆圈,每个圆圈就只有一个人

s(p,0)=0 (p>=1)    如果至少有1个人,那么任何的安排都至少包含一个圆圈

s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1)

设人被标上1,2,.....p。将这p个人排成k个圆圈有两种情况。第一种排法是在一个圆圈里只有标号为p的人自己,排法有s(p-1,k-1)个。第二种排法中,p至少和另一个人在一

个圆圈里。这些排法可以通过把1,2....p-1排成k个圆圈再把p放在1,2....p-1任何一人的左边得到,因此第二种类型的排法共有(p-1)*s(p-1,k)种排法。

在证明中我们所做的就是把{1,2,...,p}划分到k个非空且不可区分的盒子,然后将每个盒子中的元素排成一个循环排列。

 

(转) [组合数学] 第一类,第二类Stirling数,Bell数的更多相关文章

  1. Stirling数,Bell数,Catalan数,Bernoulli数

    组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.ht ...

  2. 自然数幂和——第一类Stirling数和第二类Stirling数

    第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...

  3. 第一类和第二类Stirling数

    做了老是忘…… 实际问题: 找维基百科.百度百科…… 第一类Stirling数 n个元素构成m个圆排列 S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m) 初始 S(0,0)=1 S(n ...

  4. Bell数和Stirling数

    前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组 ...

  5. [总结] 第二类Stirling数

    上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...

  6. 第二类Stirling数

    第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, ...

  7. Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

    Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  8. 第二类Stirling数初探 By cellur925

    上午noi.ac崩崩崩了,栽在组合数学上,虽说最后在辰哥&Chemist的指导下A掉了此题,也发现自己组合数学太弱了qwq. 在luogu上找题,结果找到了一个第二类斯特林数的题(还是双倍经验 ...

  9. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

随机推荐

  1. peomethues 参数设置 监控网站 /usr/local/prometheus-2.13.0.linux-amd64/prometheus --config.file=/usr/local/prometheus-2.13.0.linux-amd64/prometheus.yml --web.listen-address=:9999 --web.enable-lifecycle

    probe_http_status_code{instance="xxxx",job="web_status"} probe_http_status_code{ ...

  2. [转]地理投影,常用坐标系详解、WGS84、WGS84 Web墨卡托、WGS84 UTM、北京54坐标系、西安80坐标系、CGCS2000坐标系

    转自:http://www.rivermap.cn/docs/show-1829.html 常用坐标系详解 (一)WGS84坐标系 WGS-84坐标系(World Geodetic System一19 ...

  3. scipy详解

    登月图片消噪   scipy.fftpack模块用来计算快速傅里叶变换速度比传统傅里叶变换更快,是对之前算法的改进图片是二维数据,注意使用fftpack的二维转变方法   import numpy a ...

  4. IoAllocateMdl,MmProbeAndLockPages的用法

    转载地址:https://blog.csdn.net/wdykanq/article/details/7752909 IoAllocateMdl,MmProbeAndLockPages的用法 第一,M ...

  5. Windows下安装RabbitMQ3.6.5

    1.安装erlang 网址:http://www.erlang.org/ 下载exe文件安装即可 2.安装RabbitmQ 下载地址:http://www.rabbitmq.com/download. ...

  6. VMware Workstation 将虚拟机挂起后,电脑会很卡,SCSI转换成IDE就可以了

    摘自:http://www.360doc.com/content/15/0405/09/10098873_460727712.shtml 用过 VMware Workstation 的人,不知道有没有 ...

  7. 【428】Dijkstra 算法

    算法思想:(单源最短路径) 1个点到所有其他点的最短路径 查找顶点到其他顶点的最短路径,无法到达的记为+∞,找到最小的,就找到了最短路径的顶点 查看上一轮找到的最小点到达其他点的最小值,找到最短路径的 ...

  8. 改进初学者的PID-介绍

    最近看到了Brett Beauregard发表的有关PID的系列文章,感觉对于理解PID算法很有帮助,于是将系列文章翻译过来!在自我提高的过程中,也希望对同道中人有所帮助.作者Brett Beaure ...

  9. iOS 多线程的简单理解(1) 方式 :同步 异步

    最近遇到特别糟糕的面试,过程中提到多次对多线程的处理问题,并没有很好的给予答复和解决,所以在这里做个简单的备案: 期望能更加了解和熟练使用 多线程技术: 下面都是自己的总结,如果存在不对的,或者不足, ...

  10. [转帖]年经贴: ARM将为苹果开发高性能CPU核心 取代笔记本x86处理器?

    ARM将为苹果开发高性能CPU核心 取代笔记本x86处理器? https://www.cnbeta.com/articles/tech/899421.htm . 之前苹果的哥们说过 谁特别在意自己的软 ...