一.第二类Stirling数

定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数。

证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的是什么,而不管哪个盒子装了什么。

递推公式有:S(p,p)=1 (p>=0)         S(p,0)=0  (p>=1)         S(p,k)=k*S(p-1,k)+S(p-1,k-1)   (1<=k<=p-1) 。考虑将前p个正整数,1,2,.....p的集合作为要被划分的集合,把

{1,2,.....p}分到k个非空且不可区分的盒子的划分有两种情况:

(1)那些使得p自己单独在一个盒子的划分,存在有S(p-1,k-1)种划分个数

(2)那些使得p不单独自己在一个盒子的划分,存在有 k*S(p-1,k)种划分个数

考虑第二种情况,p不单独自己在一个盒子,也就是p和其他元素在一个集合里面,也就是说在没有放p之前,有p-1个元素已经分到了k个非空且不可区分的盒子里面(划

分个数为S(p-1,k),那么现在问题是把p放在哪个盒子里面呢,有k种选择,所以存在有k*S(p-1,k)。

模板:

注意:要用long long类型,当元素个数>20,就超int类型了。

扩展:k! *S(p,k) 计数的是把p元素集合划分到k个可区分的盒子里且没有空盒子的划分个数。

二.Bell数

定理:Bell数B(p)是将p元素集合分到非空且不可区分盒子的划分个数(没有说分到几个盒子里面)。

B(p)=S(p,0)+S(p,1)+.....+S(p,k)

所以要求Bell数就要先求出第二类Stiring数。

三.第一类Stirling数

定理:第一类Stirling数s(p,k)计数的是把p个对象排成k个非空循环排列的方法数。

证明:把上述定理叙述中的循环排列叫做圆圈。递推公式为:

s(p,p)=1 (p>=0)    有p个人和p个圆圈,每个圆圈就只有一个人

s(p,0)=0 (p>=1)    如果至少有1个人,那么任何的安排都至少包含一个圆圈

s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1)

设人被标上1,2,.....p。将这p个人排成k个圆圈有两种情况。第一种排法是在一个圆圈里只有标号为p的人自己,排法有s(p-1,k-1)个。第二种排法中,p至少和另一个人在一

个圆圈里。这些排法可以通过把1,2....p-1排成k个圆圈再把p放在1,2....p-1任何一人的左边得到,因此第二种类型的排法共有(p-1)*s(p-1,k)种排法。

在证明中我们所做的就是把{1,2,...,p}划分到k个非空且不可区分的盒子,然后将每个盒子中的元素排成一个循环排列。

 

(转) [组合数学] 第一类,第二类Stirling数,Bell数的更多相关文章

  1. Stirling数,Bell数,Catalan数,Bernoulli数

    组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.ht ...

  2. 自然数幂和——第一类Stirling数和第二类Stirling数

    第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...

  3. 第一类和第二类Stirling数

    做了老是忘…… 实际问题: 找维基百科.百度百科…… 第一类Stirling数 n个元素构成m个圆排列 S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m) 初始 S(0,0)=1 S(n ...

  4. Bell数和Stirling数

    前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组 ...

  5. [总结] 第二类Stirling数

    上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...

  6. 第二类Stirling数

    第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, ...

  7. Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

    Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  8. 第二类Stirling数初探 By cellur925

    上午noi.ac崩崩崩了,栽在组合数学上,虽说最后在辰哥&Chemist的指导下A掉了此题,也发现自己组合数学太弱了qwq. 在luogu上找题,结果找到了一个第二类斯特林数的题(还是双倍经验 ...

  9. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

随机推荐

  1. Ubuntu16.04下升级Python到3.6.5

    本文链接:https://blog.csdn.net/chaiyu2002/article/details/82698376原帖存于IT老兵博客.Ubuntu16.04下升级Python到3.6.5 ...

  2. 经管/管理/团队经典电子书pdf下载

    卓有有效的管理者 管理的本质 只有偏执狂才能生存 格鲁夫给经理人的第一课 影响力: 你为什么会说“是” 关键影响力:如何调动团队力量 执行 如何完成任务的学问

  3. Dart 自增++自减--和循环语句

    void main(){ /* ++ -- 表示自增 自减 1 在赋值运算里面 如果++ -- 写在前面 这时候先运算 再赋值,如果++ --写在后面 先赋值后运行运算 var a=10; var b ...

  4. prometheus + influxdb + grafana + mysql

    前言 本文介绍使用influxdb 作为prometheus持久化存储和使用mysql 作为grafana 持久化存储的安装方法 一 安装go环境 如果自己有go环境可以自主编译remote_stor ...

  5. 全面系统Python3入门+进阶-1-1 导学

    python特点 结束

  6. Django之Restful API

    理解Restful架构:http://www.ruanyifeng.com/blog/2011/09/restful RESTful设计指南:http://www.ruanyifeng.com/blo ...

  7. CompletableFuture Quasar 等并发编程

    CompletableFuture基本用法 https://www.cnblogs.com/cjsblog/p/9267163.html Quasar https://blog.csdn.net/ma ...

  8. idea中报Can't start Git: git.exe The path to Git executable is probably not valid. Fix it

    解决办法,点解Fix it,或者File ----setting------version control-------git,设置git的可执行文件路径就可以了 设置好了git的安装路径的可运行文件 ...

  9. 【JS新手教程】JS获取当前星期几的几种方法

    该文通过获取星期几的几种方法,介绍JS里的数组,判断,和字符串截取,可以当作新手教程看,小白也看的懂.获取星期几,可通过Date()对象的getDay()获取,获取的是一个数字,对应的是0,1,2,3 ...

  10. echars 3.0 去掉柱状图阴影用什么属性

    原图展示: 效果图展示: 在代码中注释掉这段 // tooltip : { // trigger: 'axis', // axisPointer : { // 坐标轴指示器,坐标轴触发有效 // ty ...