使用笔记:TF辅助工具--tensorflow slim(TF-Slim)
如果抛开Keras,TensorLayer,tfLearn,tensroflow 能否写出简介的代码? 可以!slim这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”
一.简介
slim被放在tensorflow.contrib这个库下面,导入的方法如下:
import tensorflow.contrib.slim as slim
众所周知 tensorflow.contrib这个库,tensorflow官方对它的描述是:此目录中的任何代码未经官方支持,可能会随时更改或删除。每个目录下都有指定的所有者。它旨在包含额外功能和贡献,最终会合并到核心TensorFlow中,但其接口可能仍然会发生变化,或者需要进行一些测试,看是否可以获得更广泛的接受。所以slim依然不属于原生tensorflow。
slim是一个使构建,训练,评估神经网络变得简单的库。它可以消除原生tensorflow里面很多重复的模板性的代码,让代码更紧凑,更具备可读性。另外slim提供了很多计算机视觉方面的著名模型(VGG, AlexNet等),我们不仅可以直接使用,甚至能以各种方式进行扩展。
slim的子模块及功能介绍:
arg_scope: provides a new scope named arg_scope that allows a user to define default arguments for specific operations within that scope.
除了基本的namescope,variabelscope外,又加了argscope,它是用来控制每一层的默认超参数的。(后面会详细说)
data: contains TF-slim's dataset definition, data providers, parallel_reader, and decoding utilities.
貌似slim里面还有一套自己的数据定义,这个跳过,我们用的不多。
evaluation: contains routines for evaluating models.
评估模型的一些方法,用的也不多
layers: contains high level layers for building models using tensorflow.
这个比较重要,slim的核心和精髓,一些复杂层的定义
learning: contains routines for training models.
一些训练规则
losses: contains commonly used loss functions.
一些loss
metrics: contains popular evaluation metrics.
评估模型的度量标准
nets: contains popular network definitions such as VGG and AlexNet models.
包含一些经典网络,VGG等,用的也比较多
queues: provides a context manager for easily and safely starting and closing QueueRunners.
文本队列管理,比较有用。
regularizers: contains weight regularizers.
包含一些正则规则
variables: provides convenience wrappers for variable creation and manipulation.
slim管理变量的机制
二.slim定义模型
slim中定义一个变量的示例:
# Model Variables
weights = slim.model_variable(
'weights'
,
shape=[
10
,
10
,
3
,
3
],
initializer=tf.truncated_normal_initializer(stddev=
0.1
),
regularizer=slim.l2_regularizer(
0.05
),
device=
'/CPU:0'
)
model_variables = slim.get_model_variables()
# Regular variables
my_var = slim.variable(
'my_var'
,
shape=[
20
,
1
],
initializer=tf.zeros_initializer())
regular_variables_and_model_variables = slim.get_variables()
slim中实现一个层:
首先让我们看看tensorflow怎么实现一个层,例如卷积层:
input = ...
with tf.name_scope(
'conv1_1'
) as scope:
kernel = tf.Variable(tf.truncated_normal([
3
,
3
,
64
,
128
], dtype=tf.float32,
stddev=1e-
1
), name=
'weights'
conv = tf.nn.conv2d(input, kernel, [
1
,
1
,
1
,
1
], padding=
'SAME'
)
biases = tf.Variable(tf.constant(
0.0
, shape=[
128
], dtype=tf.float32),
trainable=True, name=
'biases'
)
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
input = ...
net = slim.conv2d(input,
128
, [
3
,
3
], scope=
'conv1_1'
)
net = ...
net = slim.conv2d(net,
256
, [
3
,
3
], scope=
'conv3_1'
)
net = slim.conv2d(net,
256
, [
3
,
3
], scope=
'conv3_2'
)
net = slim.conv2d(net,
256
, [
3
,
3
], scope=
'conv3_3'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool2'
)
net = slim.repeat(net,
3
, slim.conv2d,
256
, [
3
,
3
], scope=
'conv3'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool2'
)
假设定义三层FC:
# Verbose way:
x = slim.fully_connected(x,
32
, scope=
'fc/fc_1'
)
x = slim.fully_connected(x,
64
, scope=
'fc/fc_2'
)
x = slim.fully_connected(x,
128
, scope=
'fc/fc_3'
)
32
,
64
,
128
], scope=
'fc'
)
# 普通方法:
x = slim.conv2d(x,
32
, [
3
,
3
], scope=
'core/core_1'
)
x = slim.conv2d(x,
32
, [
1
,
1
], scope=
'core/core_2'
)
x = slim.conv2d(x,
64
, [
3
,
3
], scope=
'core/core_3'
)
x = slim.conv2d(x,
64
, [
1
,
1
], scope=
'core/core_4'
)
# 简便方法:
slim.stack(x, slim.conv2d, [(
32
, [
3
,
3
]), (
32
, [
1
,
1
]), (
64
, [
3
,
3
]), (
64
, [
1
,
1
])], scope=
'core'
)
slim中的argscope:
如果你的网络有大量相同的参数,如下:
net = slim.conv2d(inputs,
64
, [
11
,
11
],
4
, padding=
'SAME'
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
), scope=
'conv1'
)
net = slim.conv2d(net,
128
, [
11
,
11
], padding=
'VALID'
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
), scope=
'conv2'
)
net = slim.conv2d(net,
256
, [
11
,
11
], padding=
'SAME'
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
), scope=
'conv3'
)
with slim.arg_scope([slim.conv2d], padding=
'SAME'
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
)
weights_regularizer=slim.l2_regularizer(
0.0005
)):
net = slim.conv2d(inputs,
64
, [
11
,
11
], scope=
'conv1'
)
net = slim.conv2d(net,
128
, [
11
,
11
], padding=
'VALID'
, scope=
'conv2'
)
net = slim.conv2d(net,
256
, [
11
,
11
], scope=
'conv3'
)
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
)):
with slim.arg_scope([slim.conv2d], stride=
1
, padding=
'SAME'
):
net = slim.conv2d(inputs,
64
, [
11
,
11
],
4
, padding=
'VALID'
, scope=
'conv1'
)
net = slim.conv2d(net,
256
, [
5
,
5
],
weights_initializer=tf.truncated_normal_initializer(stddev=
0.03
),
scope=
'conv2'
)
net = slim.fully_connected(net,
1000
, activation_fn=None, scope=
'fc'
)
VGG:
def vgg16(inputs):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(
0.0
,
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
)):
net = slim.repeat(inputs,
2
, slim.conv2d,
64
, [
3
,
3
], scope=
'conv1'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool1'
)
net = slim.repeat(net,
2
, slim.conv2d,
128
, [
3
,
3
], scope=
'conv2'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool2'
)
net = slim.repeat(net,
3
, slim.conv2d,
256
, [
3
,
3
], scope=
'conv3'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool3'
)
net = slim.repeat(net,
3
, slim.conv2d,
512
, [
3
,
3
], scope=
'conv4'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool4'
)
net = slim.repeat(net,
3
, slim.conv2d,
512
, [
3
,
3
], scope=
'conv5'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool5'
)
net = slim.fully_connected(net,
4096
, scope=
'fc6'
)
net = slim.dropout(net,
0.5
, scope=
'dropout6'
)
net = slim.fully_connected(net,
4096
, scope=
'fc7'
)
net = slim.dropout(net,
0.5
, scope=
'dropout7'
)
net = slim.fully_connected(net,
1000
, activation_fn=None, scope=
'fc8'
)
return
net
三.训练模型
import
tensorflow as tf
vgg = tf.contrib.slim.nets.vgg
# Load the images and labels.
images, labels = ...
# Create the model.
predictions, _ = vgg.vgg_16(images)
# Define the loss functions and get the total loss.
loss = slim.losses.softmax_cross_entropy(predictions, labels)
关于loss,要说一下定义自己的loss的方法,以及注意不要忘记加入到slim中让slim看到你的loss。
还有正则项也是需要手动添加进loss当中的,不然最后计算的时候就不优化正则目标了。
# Load the images and labels.
images, scene_labels, depth_labels, pose_labels = ...
# Create the model.
scene_predictions, depth_predictions, pose_predictions = CreateMultiTaskModel(images)
# Define the loss functions and get the total loss.
classification_loss = slim.losses.softmax_cross_entropy(scene_predictions, scene_labels)
sum_of_squares_loss = slim.losses.sum_of_squares(depth_predictions, depth_labels)
pose_loss = MyCustomLossFunction(pose_predictions, pose_labels)
slim.losses.add_loss(pose_loss) # Letting TF-Slim know about the additional loss.
# The following two ways to compute the total loss are equivalent:
regularization_loss = tf.add_n(slim.losses.get_regularization_losses())
total_loss1 = classification_loss + sum_of_squares_loss + pose_loss + regularization_loss
# (Regularization Loss is included in the total loss by
default
).
total_loss2 = slim.losses.get_total_loss()
四.读取保存模型变量
通过以下功能我们可以载入模型的部分变量:
# Create some variables.
v1 = slim.variable(name=
"v1"
, ...)
v2 = slim.variable(name=
"nested/v2"
, ...)
...
# Get list of variables to restore (which contains only
'v2'
).
variables_to_restore = slim.get_variables_by_name(
"v2"
)
# Create the saver which will be used to restore the variables.
restorer = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
# Restore variables from disk.
restorer.restore(sess,
"/tmp/model.ckpt"
)
print(
"Model restored."
)
假设我们定义的网络变量是conv1/weights,而从VGG加载的变量名为vgg16/conv1/weights,正常load肯定会报错(找不到变量名),但是可以这样:
def name_in_checkpoint(var):
return
'vgg16/'
+ var.op.name
variables_to_restore = slim.get_model_variables()
variables_to_restore = {name_in_checkpoint(var):var
for
var in variables_to_restore}
restorer = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
# Restore variables from disk.
restorer.restore(sess,
"/tmp/model.ckpt"
)
通过这种方式我们可以加载不同变量名的变量
使用笔记:TF辅助工具--tensorflow slim(TF-Slim)的更多相关文章
- 【TensorFlow】tf.reset_default_graph()函数
转载 https://blog.csdn.net/duanlianvip/article/details/98626111 tf.reset_default_graph函数用于清除默认图形堆栈并重置 ...
- tensorflow笔记3:CRF函数:tf.contrib.crf.crf_log_likelihood()
在分析训练代码的时候,遇到了,tf.contrib.crf.crf_log_likelihood,这个函数,于是想简单理解下: 函数的目的:使用crf 来计算损失,里面用到的优化方法是:最大似然估计 ...
- TensorFlow学习笔记2-性能分析工具
TensorFlow学习笔记2-性能分析工具 性能分析工具 在spyder中运行以下代码: import tensorflow as tf from tensorflow.python.client ...
- 自然语言处理NLP学习笔记二:NLP实战-开源工具tensorflow与jiagu使用
前言: NLP工具有人推荐使用spacy,有人推荐使用tensorflow. tensorflow:中文译作:张量(超过3维的叫张量)详细资料参考:http://www.tensorfly.cn/ J ...
- tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例
tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...
- 【TensorFlow】tf.nn.max_pool实现池化操作
max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(va ...
- TensorFlow学习---tf.nn.dropout防止过拟合
一. Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层. Dropout就是在不同的训练过程中随机扔掉一部分神经元.也 ...
- TensorFlow:tf.nn.max_pool实现池化操作
tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积 ...
随机推荐
- Java spi 和Spring spi
service provider framework是一个系统, 实现了SPI, 在系统里多个服务提供者模块可以提供一个服务的实现, 系统让客户端可以使用这些实现, 从而实现解耦. 一个service ...
- 【LEETCODE】37、122题,Best Time to Buy and Sell Stock II
package y2019.Algorithm.array; /** * @ProjectName: cutter-point * @Package: y2019.Algorithm.array * ...
- THUSC2019:Illusory World
拿了1=就来更 Update:没约咕了
- 使用 SetParent 制作父子窗口的时候,如何设置子窗口的窗口样式以避免抢走父窗口的焦点
原文:使用 SetParent 制作父子窗口的时候,如何设置子窗口的窗口样式以避免抢走父窗口的焦点 制作传统 Win32 程序以及 Windows Forms 程序的时候,一个用户看起来独立的窗口本就 ...
- PDA日常问题
一.连接网络异常 1.摩托摩拉3190连接wifi时报错,提示:scan error adapter unavailable 确认网卡是不是禁用状态,CE是右下角有个蓝色的图,上面有个X,点一下,然后 ...
- 空间数据索引RTree(R树)完全解析及Java实现
第一部分 空间数据的背景介绍 空间数据的建模 基于实体的模型(基于对象)Entity-based models (or object based) 常用的空间数据查询方式 空间数据获取的方法 R树 简 ...
- 数据结构与算法(周测7-拓扑排序和AOV网络)
判断题 1.AOE图的关键路径就是最长的路径 T F 2.AOE图的权值最大的边(活动)一定是关键活动. T F 两条边相加可能比最大的边还要大. 3.在AOE ...
- 深入理解JVM(一) -- 自动内存管理机制
Java运行时数据区域分为:程序计数器,虚拟机栈,本地方法栈,Java堆,方法区,运行时常量池,直接内存,结构如下: 1.程序计数器: 是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示 ...
- python3基础之“小练习(1)”
(一)打印3个不同的字符 # a=int("123") # b="123" # c=1.2 # print(type(a),a) # print(type(b) ...
- SIM900 HTTP POST
AT+SAPBR=3,1,"CONTYPE","GPRS" OK AT+SAPBR=3,1,"APN","CMNET" ...