目的

使用雷达点云提供的深度信息

如何实现

将雷达的三维点云投影到相机的二维图像上

kitti数据集简介

kitti的数据采集平台,配置有四个摄像机和一个激光雷达,四个摄像机中有两个灰度摄像机,两个彩色摄像机。

从图中可看出,关于相机坐标系(camera)的方向与雷达坐标系(velodyne)的方向规定:

camera:  x = right, y = down, z = forward

velodyne: x = forward, y = left, z = up

那么velodyne所采集到的点云数据中,各点的x轴坐标,即为所需的深度信息。

更多详细的简介网络上都能搜索到,这里只列举了与当前目的相关的必要信息。

kitti数据集的raw_data

raw_data对于每个序列都提供了同步且校准后的数据、标定数据。

同步且校准后的数据:

./imageXX 包含有各个摄像机采集到的图像序列

./velodyne_points 包含有雷达扫描到的数据,点云形式,每个点以 (x,y,z,i) 格式存储,i为反射值

(雷达采集数据时,是绕着竖直轴旋转扫描,只有当雷达旋转到与相机的朝向一致时会触发相机采集图像。不过在这里无需关注这一点,直接使用给出的同步且校准后的数据即可,它已将雷达数据与相机数据对齐,也就是可以认为同一文件名对应的图像数据与雷达点云数据属于同一个场景。)

标定数据:

./cam_to_cam 包含有各个摄像机的标定参数

./velo_to_cam 包含有雷达到摄像机的变换参数

对于raw_data,kitti还提供了样例工具,方便读取各种数据文件并输出,参见官网raw_data下载页的development kit

利用kitti提供的devkit以及相应数据集的calib文件

解读calib文件夹

cam_to_cam,包含各相机的标定参数

- S_xx: 1x2 矫正前xx号相机的图片尺寸
  - K_xx: 3x3 矫正前xx号相机的标定参数
  - D_xx: 1x5 矫正前xx号相机的畸变系数
  - R_xx: 3x3 外参,xx号相机的旋转矩阵
  - T_xx: 3x1 外参,xx号相机的平移矩阵
  - S_rect_xx: 1x2 矫正后XX号相机的图片尺寸
  - R_rect_xx: 3x3 旋转矩阵,用于矫正xx号相机,使得图像平面共面(原话是make image planes co-planar)。
  - P_rect_0x: 3x4 投影矩阵,用于从矫正后的0号相机坐标系 投影到 X号相机的图像平面。

这里只用到最后两个矩阵R_rect和P_rect

velo_to_cam,从雷达坐标系到0号相机坐标系的转换

- R: 3x3 旋转矩阵
  - T:  3x1 平移矩阵
  - delta_f 和delta_c 已被弃用

由此可以得出从雷达坐标系变换到xx号相机的图像坐标系的公式:

设X为雷达坐标系中的齐次坐标 X = [x y z 1]',对应于xx号相机的图像坐标系的齐次坐标Y = [u v 1]',则:

其中

(R|T) :        雷达坐标系  ->  0号相机坐标系
R_rect_00: 0号相机坐标系 -> 矫正后的0号相机坐标系
P_rect_0x: 矫正后的0号相机坐标系  ->  x号相机的图像平面
更详细完整的解读参见devkit中的readme.txt

解读devkit

官网提供的样例代码中 run_demoVelodyne.m 实现了将雷达点云投影到相机图像

代码流程

  1. 从所给路径中读取标定文件,获取具体矩阵数值
  2. 根据上述公式,计算投影矩阵 P_velo_to_img,即 Y = P_velo_to_img * X
  3. 从所给路径中读取相机图片,并加载雷达的点云数据。由于只做展示用,为了加快运行速度,对于雷达点云,每隔5个点只保留1个点
  4. 移除那些距离雷达5米之内(雷达的x方向)的点 (猜测这些点落在相机和雷达之间,故不会出现在图像平面上)
  5. 作投影计算,得到投影到二维图像上的点
    6.在图像上画出投影后的点,按照深度(雷达点的x方向值)确定颜色,彩色则是暖色越近,冷色越远;灰度则是深色越近,浅色越远。

若需要从深度图获取深度值,应按照画投影点时深度值到颜色(灰度)值的转换。

来源:https://www.cnblogs.com/notesbyY/p/10478645.html

KITTI数据集的更多相关文章

  1. KITTI数据集格式说明

    由于上一篇博客所提到的论文中的训练数据是KITTI的数据集,因此如果我想要用自己的数据集进行训练的话,就需要先弄清楚KITTI数据集的格式,在以下的网址找到了说明: 首先,数据描述中是这样的: 在以下 ...

  2. 激光相机数据融合(3)--KITTI数据集

    KITTI数据集提供了双目图像,激光数据,和imu/gps位置信息,其中还包括了大量的算法.下载地址为:http://www.cvlibs.net/datasets/kitti/raw_data.ph ...

  3. KITTI数据集的使用——雷达与相机的数据融合

    目录 目的 如何实现 kitti数据集简介 kitti数据集的raw_data 利用kitti提供的devkit以及相应数据集的calib文件 解读calib文件夹 解读devkit 目的 使用雷达点 ...

  4. kitti数据集标定文件解析

    1.kitti数据采集平台 KITTI数据集的数据采集平台装配有2个灰度摄像机,2个彩色摄像机,一个Velodyne64线3D激光雷达,4个光学镜头,以及1个GPS导航系统.图示为传感器的配置平面图, ...

  5. kitti 数据集解析

    1.KITTI数据集采集平台: KITTI数据采集平台包括2个灰度摄像机,2个彩色摄像机,一个Velodyne 3D激光雷达,4个光学镜头,以及1个GPS导航系统.坐标系转换原理参见click.KIT ...

  6. KITTI数据集上MaskRCNN检测效果示例

    KITTI数据集上MaskRCNN检测效果示例 在Semantic Instance Segmentation Evaluation中,MaskRCNN性能效果排名第一. Test Image 0 I ...

  7. stixel-world跑在kitti数据集

    kitti数据集中每一帧的Calibration不同,每一帧都存储了4个相机的Calibration http://ww.cvlibs.net/publications/Geiger2013IJRR. ...

  8. 下载Kitti 数据集(dataset) data_road.zip

    官网下载http://www.cvlibs.net/download.php?file=data_road.zip,耗时近3小时,虽然只有几百兆. 但是,我坚持下来了. 保存到了百度网盘,以供国内用户 ...

  9. yolo-开源数据集coco kitti voc

    1.kitti数据集(参考博客:https://blog.csdn.net/jesse_mx/article/details/65634482  https://blog.csdn.net/baoli ...

随机推荐

  1. SpringBoot-dubbo自定义负载均衡实现简单灰度

    本文介绍如何利用dubbo自定义负载实现简单灰度(用户纬度,部分用户访问一个服务,其余访问剩余服务). 其实在这之前,对dubbo了解的也不是很多,只是简单的使用过,跑了几个demo而已,但是得知接下 ...

  2. FontForge 汉化教程

    引用 :http://www.sucaijishi.com/2018/articles_0815/258.html FontForge是一款免费字库编辑工具,官方暂不提供简体中文,本文汉化方法在201 ...

  3. redis对象存储(适用于订单系统自动更新)

    启动:redis-server.exe redis.windows.conf连接:redis-cli.exe -h 127.0.0.1 -p 6379 #插入取消的订单列表与时间: redis 127 ...

  4. Windows环境安装PyQt5

    目录 1. 安装Python 2. 安装Pycharm 3. 安装PyQt5 4. 安装PyQt5-tools 5. 可能出现的问题 1. Qt Designer 程序位置 2. Qt Designe ...

  5. UML类图记忆口诀

    UML类图在设计模式书籍中用的比较多,经常忘记,口诀挺重要的,比如我们从小到大,除了乘法口诀.元素周期表等口诀形式的知识,其它的知识都基本忘记了, 所以编写口诀如下 1.三级石 2.见关一 3.零足迹 ...

  6. 前端学习:学习笔记(CSS部分)

    前端学习:学习笔记(CSS部分) CSS的学习总结(图解) CSS的引入方式和书写规范 CSS的插入方式_内嵌样式 <!DOCTYPE html> <html> <hea ...

  7. Java设计模式原型模式

    原型模式: – 通过new产生一个对象需要非常繁琐的数据准备或访问权限,则可以使用原型模式. – 就是java中的克隆技术,以某个对象为原型,复制出新的对象.显然,新的对象具备原型对象的特点 – 优势 ...

  8. Kafka学习笔记之Kafka背景及架构介绍

    0x00 概述 本文介绍了Kafka的创建背景,设计目标,使用消息系统的优势以及目前流行的消息系统对比.并介绍了Kafka的架构,Producer消息路由,Consumer Group以及由其实现的不 ...

  9. 在ASP.NET Web API 2中使用Owin基于Token令牌的身份验证

    基于令牌的身份验证 基于令牌的身份验证主要区别于以前常用的常用的基于cookie的身份验证,基于cookie的身份验证在B/S架构中使用比较多,但是在Web Api中因其特殊性,基于cookie的身份 ...

  10. mysql启动时出现ERROR 2003问题的解决方法

    目录 写在前面 问题描述 分析原因 问题解决 写在前面 今天,在打开Navicat Permium 链接MySQL 的时候出现Error 2003 的错误. 遂记录产生的原因以及解决方法. 问题描述 ...