马氏距离有多重定义:

1)可以表示 某一个样本与DataSet的距离。

2)可以表示两个DataSet之间的距离。

1) The Mahalanobis distance of an observation {\displaystyle {\vec {x}}=(x_{1},x_{2},x_{3},\dots ,x_{N})^{T}} from a set of observations with mean {\displaystyle {\vec {\mu }}=(\mu _{1},\mu _{2},\mu _{3},\dots ,\mu _{N})^{T}} and covariance matrix S is defined as:

Intuitive explanation

Consider the problem of estimating the probability that a test point in N-dimensional Euclidean space belongs to a set, where we are given sample points that definitely belong to that set. Our first step would be to find the average or center of mass of the sample points. Intuitively, the closer the point in question is to this center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small range, so that we can decide whether a given distance from the center is noteworthy or not. The simplistic approach is to estimate the standard deviation of the distances of the sample points from the center of mass. If the distance between the test point and the center of mass is less than one standard deviation, then we might conclude that it is highly probable that the test point belongs to the set. The further away it is, the more likely that the test point should not be classified as belonging to the set.

This intuitive approach can be made quantitative by defining the normalized distance between the test point and the set to be {\displaystyle {x-\mu } \over \sigma }. By plugging this into the normal distribution we can derive the probability of the test point belonging to the set.

The drawback of the above approach was that we assumed that the sample points are distributed about the center of mass in a spherical(圆) manner. Were the distribution to be decidedly non-spherical, for instance ellipsoidal, then we would expect the probability of the test point belonging to the set to depend not only on the distance from the center of mass, but also on the direction. In those directions where the ellipsoid has a short axis the test point must be closer, while in those where the axis is long the test point can be further away from the center.

Putting this on a mathematical basis, the ellipsoid that best represents the set's probability distribution can be estimated by building the covariance matrix of the samples. The Mahalanobis distance is the distance of the test point from the center of mass divided by the width of the ellipsoid in the direction of the test point.

2)Mahalanobis distance can also be defined as a dissimilarity measure between two random vectors {\displaystyle {\underline {x}}} and {\displaystyle {\underline {y}}} of the same distribution with the covariance matrix S:

{\displaystyle d({\vec {x}},{\vec {y}})={\sqrt {({\vec {x}}-{\vec {y}})^{T}S^{-1}({\vec {x}}-{\vec {y}})}}.\,}

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called a standardized Euclidean distance:

{\displaystyle d({\vec {x}},{\vec {y}})={\sqrt {\sum _{i=1}^{N}{(x_{i}-y_{i})^{2} \over s_{i}^{2}}}},}

where si is the standard deviation of the xi and yi over the sample set.

References:

http://people.revoledu.com/kardi/tutorial/Similarity/MahalanobisDistance.html

https://en.wikipedia.org/wiki/Mahalanobis_distance

Mahalanobia Distance(马氏距离)的解释的更多相关文章

  1. paper 114:Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  2. Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  3. 马氏距离(Mahalanobis distance)

    马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离.它是一种有效的计算两个未知样本集的相似度的方法.与欧 ...

  4. MATLAB求马氏距离(Mahalanobis distance)

    MATLAB求马氏距离(Mahalanobis distance) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.马氏距离计算公式 d2(xi,  ...

  5. Mahalanobis距离(马氏距离)的“哲学”解释

    讲解教授:赵辉 (FROM : UESTC) 课程:<模式识别> 整理:PO主 基础知识: 假设空间中两点x,y,定义: 欧几里得距离, Mahalanobis距离, 不难发现,如果去掉马 ...

  6. 有关马氏距离和hinge loss的学习记录

    关于度量学习,之前没有看太多相关的文献.不过南京的周老师的一篇NIPS,确实把这个问题剖析得比较清楚. Mahalanobis距离一般表示为d=(x-y)TM(x-y),其中x和y是空间中两个样本点, ...

  7. 基于欧氏距离和马氏距离的异常点检测—matlab实现

    前几天接的一个小项目,基于欧氏距离和马氏距离的异常点检测,已经交接完毕,现在把代码公开. 基于欧式距离的: load data1.txt %导入数据,行为样本,列为特征 X=data1; %赋值给X ...

  8. Python实现的计算马氏距离算法示例

    Python实现的计算马氏距离算法示例 本文实例讲述了Python实现的计算马氏距离算法.分享给大家供大家参考,具体如下: 我给写成函数调用了 python实现马氏距离源代码:     # encod ...

  9. Levenshtein Distance莱文斯坦距离算法来计算字符串的相似度

    Levenshtein Distance莱文斯坦距离定义: 数学上,两个字符串a.b之间的莱文斯坦距离表示为levab(|a|, |b|). levab(i, j) = max(i, j)  如果mi ...

随机推荐

  1. session内置对象

    SimpleDateFormat sdf = new SimpleDateFormat(yyyy年MM月dd日)  //处理日期格式 session.getCreationDate() 是获取sess ...

  2. 如何使用keil5将stm32的hal库编译成lib文件——F1版本

    hal库中keil5中编译的速度是比较慢的,相同情况下,每次都要编译的时候,比标准库是要慢很多的,因此就hal库编译成lib文件是一种加快编译速度的方法,当然也有其自身的缺点.一.步骤1.使用cube ...

  3. Java字符串之间拼接时,如果有null值,则会直接拼接上null

    package com.fgy.demo; public class demo06 { public static void main(String[] args) { String str1 = & ...

  4. 动手动脑---找出指定文件夹下所有包容指定字符串的txt文件

    思路:先判断是否为文件,如果是文件,则需要判断改文件名是否包含字符串"txt",包含则输出.如果是文件夹的话,先需要判断文件名是否包含".txt"(因为文件名也 ...

  5. 2019.12.09 java循环(do……while)

    class Demo05{ public static void main(String[] args) { int sum=0; int i=1; do{ sum+=i; i++; }while(i ...

  6. packr 方便的潜入静态资源文件到golang 二进制文件中

    类似的工具以前有介绍过statik,今天使用的工具是packr 也是很方便的golang tools 安装 go get -u github.com/gobuffalo/packr/packr 或者我 ...

  7. Python 下载超大文件

    使用python下载超大文件, 直接全部下载, 文件过大, 可能会造成内存不足, 这时候要使用requests 的 stream模式, 主要代码如下 iter_content:一块一块的遍历要下载的内 ...

  8. 自助法(Bootstraping)

    自助法(Bootstraping)是另一种模型验证(评估)的方法(之前已经介绍过单次验证和交叉验证:验证和交叉验证(Validation & Cross Validation)).其以自助采样 ...

  9. 54、Spark Streaming:DStream的transformation操作概览

    一. transformation操作概览 Transformation Meaning map 对传入的每个元素,返回一个新的元素 flatMap 对传入的每个元素,返回一个或多个元素 filter ...

  10. Hungry Canadian

    Hungry Canadian(简单dp) 具体见代码注释 #include <iostream> #include <cstdio> #include <cstring ...