Gevent模块,协程应用
Gevent官网文档地址:http://www.gevent.org/contents.html
进程、线程、协程区分
我们通常所说的协程Coroutine其实是corporate routine的缩写,直接翻译为协同的例程,一般我们都简称为协程。
在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程。
进程和协程
下面对比一下进程和协程的相同点和不同点:
相同点:
相同点存在于,当我们挂起一个执行流的时,我们要保存的东西:
- 栈, 其实在你切换前你的局部变量,以及要函数的调用都需要保存,否则都无法恢复
- 寄存器状态,这个其实用于当你的执行流恢复后要做什么
而寄存器和栈的结合就可以理解为上下文,上下文切换的理解:
CPU看上去像是在并发的执行多个进程,这是通过处理器在进程之间切换来实现的,操作系统实现这种交错执行的机制称为上下文切换
操作系统保持跟踪进程运行所需的所有状态信息。这种状态,就是上下文。
在任何一个时刻,操作系统都只能执行一个进程代码,当操作系统决定把控制权从当前进程转移到某个新进程时,就会进行上下文切换,即保存当前进程的上下文,恢复新进程的上下文,然后将控制权传递到新进程,新进程就会从它上次停止的地方开始。
不同点:
- 执行流的调度者不同,进程是内核调度,而协程是在用户态调度,也就是说进程的上下文是在内核态保存恢复的,而协程是在用户态保存恢复的,很显然用户态的代价更低
- 进程会被强占,而协程不会,也就是说协程如果不主动让出CPU,那么其他的协程,就没有执行的机会。
- 对内存的占用不同,实际上协程可以只需要4K的栈就足够了,而进程占用的内存要大的多
- 从操作系统的角度讲,多协程的程序是单进程,单协程
线程和协程
既然我们上面也说了,协程也被称为微线程,下面对比一下协程和线程:
- 线程之间需要上下文切换成本相对协程来说是比较高的,尤其在开启线程较多时,但协程的切换成本非常低。
- 同样的线程的切换更多的是靠操作系统来控制,而协程的执行由我们自己控制。
协程只是在单一的线程里不同的协程之间切换,其实和线程很像,线程是在一个进程下,不同的线程之间做切换,这也可能是协程称为微线程的原因吧。
Gevent模块
Gevent是一种基于协程的Python网络库,它用到Greenlet提供的,封装了libevent事件循环的高层同步API。它让开发者在不改变编程习惯的同时,用同步的方式写异步I/O的代码。
简单示例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import gevent def test1(): print 12 gevent.sleep( 0 ) print 34 def test2(): print 56 gevent.sleep( 0 ) print 78 gevent.joinall([ gevent.spawn(test1), gevent.spawn(test2), ]) |
结果:
1
2
3
4
|
12 56 34 78 |
猴子补丁 Monkey patching
这个补丁是Gevent模块最需要注意的问题,有了它,才会让Gevent模块发挥它的作用。我们往往使用Gevent是为了实现网络通信的高并发,但是,Gevent直接修改标准库里面大部分的阻塞式系统调用,包括socket、ssl、threading和 select等模块,而变为协作式运行。但是我们无法保证你在复杂的生产环境中有哪些地方使用这些标准库会由于打了补丁而出现奇怪的问题。
一种方法是使用gevent下的socket模块,我们可以通过”from gevent import socket”来导入。不过更常用的方法是使用猴子布丁(Monkey patching)。使用猴子补丁褒贬不一,但是官网上还是建议使用”patch_all()”,而且在程序的第一行就执行。
1
2
3
4
5
6
7
8
9
|
from gevent import monkey; monkey.patch_socket() import gevent import socket urls = [ 'www.baidu.com' , 'www.gevent.org' , 'www.python.org' ] jobs = [gevent.spawn(socket.gethostbyname, url) for url in urls] gevent.joinall(jobs, timeout = 5 ) print [job.value for job in jobs] |
上述代码的第一行就是对socket标准库打上猴子补丁,此后socket标准库中的类和方法都会被替换成非阻塞式的,所有其他的代码都不用修改,这样协程的效率就真正体现出来了。Python中其它标准库也存在阻塞的情况,gevent提供了”monkey.patch_all()”方法将所有标准库都替换。
获取协程状态
- started属性/ready()方法:判断协程是否已启动。
- successful()方法:判断协程是否成功运行且没有抛出异常。
- value属性:获取协程执行完之后的返回值。
另外,greenlet协程运行过程中发生的异常是不会被抛出到协程外的,因此需要用协程对象的”exception”属性来获取协程中的异常。
下面的例子很好的演示了各种方法和属性的使用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
#!/usr/bin/env python # _*_ coding utf-8 _*_ #Author: aaron import gevent def win(): return 'You win!' def fail(): raise Exception( 'You failed!' ) winner = gevent.spawn(win) loser = gevent.spawn(fail) print (winner.started) # True print (loser.started) # True # 在Greenlet中发生的异常,不会被抛到Greenlet外面。 # 控制台会打出Stacktrace,但程序不会停止 try : gevent.joinall([winner, loser]) except Exception as e: # 这段永远不会被执行 print ( 'This will never be reached' ) print (winner.ready()) # True print (loser.started) # True print (winner.value) # 'You win!' print (loser.value) # None print ( 'successful ' ,winner.successful()) # True print ( 'successful ' ,loser.successful()) # False # 这里可以通过raise loser.exception 或 loser.get() # 来将协程中的异常抛出 print (loser.exception) |
协程运行超时控制
之前我们讲过在”gevent.joinall()”方法中可以传入timeout参数来设置超时,我们也可以在全局范围内设置超时时间:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
import gevent from gevent import Timeout timeout = Timeout( 2 ) # 2 seconds timeout.start() def wait(): gevent.sleep( 10 ) try : gevent.spawn(wait).join() except Timeout: print ( 'Could not complete' ) |
上例中,我们将超时设为2秒,此后所有协程的运行,如果超过两秒就会抛出”Timeout”异常。我们也可以将超时设置在with语句内,这样该设置只在with语句块中有效:
1
2
|
with Timeout( 1 ): gevent.sleep( 10 ) |
此外,我们可以指定超时所抛出的异常,来替换默认的”Timeout”异常。比如下例中超时就会抛出我们自定义的”TooLong”异常。
1
2
3
4
5
|
class TooLong(Exception): pass with Timeout( 1 , TooLong): gevent.sleep( 10 ) |
协程间通信
事件(Event)对象
greenlet协程间的异步通讯可以使用事件(Event)对象。该对象的”wait()”方法可以阻塞当前协程,而”set()”方法可以唤醒之前阻塞的协程。在下面的例子中,5个waiter协程都会等待事件evt,当setter协程在3秒后设置evt事件,所有的waiter协程即被唤醒。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
#!/usr/bin/env python # _*_ coding utf-8 _*_ #Author: aaron import gevent from gevent.event import Event evt = Event() def setter(): print 'Wait for me' gevent.sleep( 3 ) # 3秒后唤醒所有在evt上等待的协程 print "Ok, I'm done" evt. set () # 唤醒 def waiter(): print "I'll wait for you" evt.wait() # 等待 print 'Finish waiting' gevent.joinall([ gevent.spawn(setter), gevent.spawn(waiter), gevent.spawn(waiter), gevent.spawn(waiter), gevent.spawn(waiter), gevent.spawn(waiter) ]) |
AsyncResult事件
除了Event事件外,gevent还提供了AsyncResult事件,它可以在唤醒时传递消息。让我们将上例中的setter和waiter作如下改动:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
#!/usr/bin/env python # _*_ coding utf-8 _*_ #Author: aaron from gevent.event import AsyncResult aevt = AsyncResult() def setter(): print 'Wait for me' gevent.sleep( 3 ) # 3秒后唤醒所有在evt上等待的协程 print "Ok, I'm done" aevt. set ( 'Hello!' ) # 唤醒,并传递消息 def waiter(): print ( "I'll wait for you" ) message = aevt.get() # 等待,并在唤醒时获取消息 print 'Got wake up message: %s' % message |
队列 Queue
队列Queue的概念相信大家都知道,我们可以用它的put和get方法来存取队列中的元素。gevent的队列对象可以让greenlet协程之间安全的访问。运行下面的程序,你会看到3个消费者会分别消费队列中的产品,且消费过的产品不会被另一个消费者再取到:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
#!/usr/bin/env python # _*_ coding utf-8 _*_ #Author: aaron<br> import gevent from gevent.queue import Queue products = Queue() def consumer(name): #while not products.empty(): while True : try : print ( '%s got product %s' % (name, products.get_nowait())) gevent.sleep( 0 ) except gevent.queue.Empty: break print ( 'Quit' ) def producer(): for i in range ( 1 , 10 ): products.put(i) gevent.joinall([ gevent.spawn(producer), gevent.spawn(consumer, 'steve' ), gevent.spawn(consumer, 'john' ), gevent.spawn(consumer, 'nancy' ), ]) |
注意:协程队列跟线程队列是一样的,put和get方法都是阻塞式的,它们都有非阻塞的版本:put_nowait和get_nowait。如果调用get方法时队列为空,则是不会抛出”gevent.queue.Empty”异常。我们只能使用get_nowait()的方式让气抛出异常。
信号量
信号量可以用来限制协程并发的个数。它有两个方法,acquire和release。顾名思义,acquire就是获取信号量,而release就是释放。当所有信号量都已被获取,那剩余的协程就只能等待任一协程释放信号量后才能得以运行:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
#!/usr/bin/env python # _*_ coding utf-8 _*_ #Author: aaron import gevent from gevent.coros import BoundedSemaphore sem = BoundedSemaphore( 2 ) def worker(n): sem.acquire() print ( 'Worker %i acquired semaphore' % n) gevent.sleep( 0 ) sem.release() print ( 'Worker %i released semaphore' % n) gevent.joinall([gevent.spawn(worker, i) for i in xrange ( 0 , 6 )]) |
上面的例子中,我们初始化了”BoundedSemaphore”信号量,并将其个数定为2。所以同一个时间,只能有两个worker协程被调度。程序运行后的结果如下:
1
2
3
4
5
6
7
8
9
10
11
12
|
Worker 0 acquired semaphore Worker 1 acquired semaphore Worker 0 released semaphore Worker 1 released semaphore Worker 2 acquired semaphore Worker 3 acquired semaphore Worker 2 released semaphore Worker 3 released semaphore Worker 4 acquired semaphore Worker 4 released semaphore Worker 5 acquired semaphore Worker 5 released semaphore |
如果信号量个数为1,那就等同于同步锁。
协程本地变量
同线程类似,协程也有本地变量,也就是只在当前协程内可被访问的变量:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
#!/usr/bin/env python # _*_ coding utf-8 _*_ #Author: aaron import gevent from gevent.local import local data = local() def f1(): data.x = 1 print data.x def f2(): try : print data.x except AttributeError: print 'x is not visible' gevent.joinall([ gevent.spawn(f1), gevent.spawn(f2) ]) |
通过将变量存放在local对象中,即可将其的作用域限制在当前协程内,当其他协程要访问该变量时,就会抛出异常。不同协程间可以有重名的本地变量,而且互相不影响。因为协程本地变量的实现,就是将其存放在以的”greenlet.getcurrent()”的返回为键值的私有的命名空间内。
多并发socket模型
服务器端:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
#!/usr/bin/env python # _*_ coding utf-8 _*_ #Author: aaron import socket import gevent from gevent import socket, monkey monkey.patch_all() def server(port): s = socket.socket() s.bind(( '0.0.0.0' , port)) s.listen( 500 ) while True : cli, addr = s.accept() gevent.spawn(handle_request, cli) def handle_request(conn): try : while True : data = conn.recv( 1024 ) print ( "recv:" , data) conn.send(data) if not data: conn.shutdown(socket.SHUT_WR) except Exception as ex: print (ex) finally : conn.close() if __name__ = = '__main__' : server( 8001 ) |
当客户端连接上服务器端时,服务器端通过开辟一个协程与该客户端完成交互任务,同时由于使用了Gevent协程的方式,在每个客户端与服务器交互时,并不会影响到服务器端的工作。
客户端:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
#!/usr/bin/env python # _*_ coding utf-8 _*_ #Author: aaron import socket HOST = 'localhost' # The remote host PORT = 8001 # The same port as used by the server s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) while True : msg = bytes( input ( ">>:" ), encoding = "utf8" ) s.sendall(msg) data = s.recv( 1024 ) # print(data) print ( 'Received' , repr (data)) # repr 格式化输出 s.close() |
Gevent模块,协程应用的更多相关文章
- python 并发编程 基于gevent模块 协程池 实现并发的套接字通信
基于协程池 实现并发的套接字通信 客户端: from socket import * client = socket(AF_INET, SOCK_STREAM) client.connect(('12 ...
- Python使用gevent实现协程
Python中多任务的实现可以使用进程和线程,也可以使用协程. 一.协程介绍 协程,又称微线程.英文名Coroutine.协程是Python语言中所特有的,在其他语言中没有. 协程是python中另外 ...
- Python 通过gevent实现协程
#coding:utf-8-*- '''协程(coroutine)又称微线程.纤程,是一种用户级的轻量级线程.协程有自己的寄存器上下文和栈.携程调度时,将寄存器上下文和栈 保存,在切换回来的时候恢复保 ...
- Gevent的协程实现原理
之前之所以看greenlet的代码实现,主要就是想要看看gevent库的实现代码. .. 然后知道了gevent的协程是基于greenlet来实现的...所以就又先去看了看greenlet的实现... ...
- gevent实现协程
gevent的好处:能够自动识别程序中的耗时操作,在耗时的时候自动切换到其他任务 # gevent的好处:能够自动识别程序中的耗时操作,在耗时的时候自动切换到其他任务 from gevent impo ...
- gevent多协程运用
#导包 import gevent #猴子补丁 from gevent import monkey monkey.patch_all() from d8_db import ConnectMysql ...
- 线程回调,线程中的队列,事件,greenlet模块,gevent模块,自定义补丁, 单线程实现并发,协程
1.线程回调 在线程池/进程池每次提交任务,都会返回一个表示任务的对象,Future对象Future对象具备一个绑定方法,add_done_callback 用于指定回调函数 add 意味着可以添加多 ...
- 协程gevent模块和猴子补丁
# pip 装模块 greenlet和gevent # 协程 # 与进程.线程一样也是实现并发的手段 # 创建一个线程.关闭一个线程都需要创建寄存器.栈等.需要消耗时间 # 协程本质上是一个线程 # ...
- python并发编程之gevent协程(四)
协程的含义就不再提,在py2和py3的早期版本中,python协程的主流实现方法是使用gevent模块.由于协程对于操作系统是无感知的,所以其切换需要程序员自己去完成. 系列文章 python并发编程 ...
- 什么是协程(第三方模块gevent--内置模块asyncio)
目录 一:协程 1.什么是协程? 2.携程的作用? 3.安装第三方模块:在命令行下 二:greenlet模块(初级模块,实现了保存状态加切换) 三: gevent模块(协程模块) 1.time 模式协 ...
随机推荐
- js去除数组中重复的数字
var arr = [2,1,4,3,2,4,2,3,4,2,6,5,5] var obj = {}; var arrNew = []; for(var i=arr.length-1;i>=0; ...
- 闷声发大财,中国 App 出海编年史及方法论
https://zhuanlan.zhihu.com/p/26700406 第一代 iPhone 发布于 2007 年初,至今已有十年有余.中国互联网公司出海的新篇章,也正始于这 iPhone / A ...
- MySql添加字段命令
使用ALTER TABLE命令来向一个表添加字段,示例如下: -- 向t_user表添加user_age字段 ) DEFAULT NULL COMMENT '年龄' AFTER user_email; ...
- 51Node1228序列求和 ——自然数幂和模板&&伯努利数
伯努利数法 伯努利数原本就是处理等幂和的问题,可以推出 $$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n ...
- 四.python基础数据类型
一.什么是数据类型? 什么是数据类型? 我们人类可以很容易的分清数字与字符的区别,但是计算机并不能呀,计算机虽然很强大,但从某种角度上看又很傻,除非你明确的告诉它,1是数字,“汉”是文字,否则它是分不 ...
- window对象方法(alert-confirm-prompt)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Lightning Web Components 来自salesforce 的web 组件化解决方案
Lightning Web Components 是一个轻量,快速,企业级别的web 组件化解决方案,官方网站也提供了很全的文档 对于我们学习使用还是很方便的,同时我们也可以方便的学习了解salesf ...
- 【luoguP1414]】又是毕业季II
题目链接 \(solution\) 暴力求每个数有多少个倍数,从大到小,数\(i\)的倍数有\(f_i\)个,那么选\(1\)~\(f_i\)个同学的答案可以为\(i\),取第一次更新的答案最大 #i ...
- 【CSP模拟赛】Confess(数学 玄学)
题目描述 小w隐藏的心绪已经难以再隐藏下去了.小w有n+ 1(保证n为偶数)个心绪,每个都包含了[1,2n]的一个大小为n的子集.现在他要找到隐藏的任意两个心绪,使得他们的交大于等于n/2. 输入描述 ...
- [C++] new和delete运算符使用方法
new 和 delete 是C++语言中的两个运算符,配套使用. new:用于分配内存,与C语言中的 malloc 相同,分配在堆内存 delete:用于释放内存,与C语言中的 free 相同,释放堆 ...