动手学深度学习8-softmax分类pytorch简洁实现
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append('..')
import d2lzh_pytorch as d2l
import torchvision
import torchvision.transforms as transforms
定义和初始化模型
#与上一节同样的数据集以及批量大小
batch_size= 256
mnist_train= torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',download=True,train=True,transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',download=True,train=False,transform=transforms.ToTensor())
if sys.platform.startswith('win'):
num_worker=0 # 表示不用额外的进程来加速读取数据
else:
num_worker=4
train_iter = torch.utils.data.DataLoader(mnist_train,batch_size=batch_size,shuffle=True,num_workers=num_worker)
test_iter = torch.utils.data.DataLoader(mnist_test,batch_size=batch_size,shuffle=False,num_workers=num_worker)
softmax的输出层是一个全连接层,所以我们使用一个线性模块就可以,因为前面我们数据返回的每个batch的样本X的形状为(batch_size,1,28,28),我们先用view()将X转化为(batch_size,784)才送入全连接层
num_inputs = 784
num_outputs = 10
class LinearNet(nn.Module):
def __init__(self,num_inputs,num_outputs):
super(LinearNet,self).__init__()
self.linear = nn.Linear(num_inputs,num_outputs)
def forward(self,x):
y = self.linear(x.view(x.shape[0],-1))
return y
net = LinearNet(num_inputs,num_outputs)
# 我们将形状转化的这个功能定义成一个FlattenLayer
class FlattenLayer(nn.Module):
def __init__(self):
super(FlattenLayer,self).__init__()
def forward(self,x):
return x.view(x.shape[0],-1)
from collections import OrderedDict
net = nn.Sequential(
OrderedDict(
[
('flatten',FlattenLayer()),
('linear',nn.Linear(num_inputs,num_outputs))
])
)
# 之前线性回归的是num_output是1
init.normal_(net.linear.weight,mean=0,std=0.01)
init.constant_(net.linear.bias,val=0)
Parameter containing:
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True)
print(net)
Sequential(
(flatten): FlattenLayer()
(linear): Linear(in_features=784, out_features=10, bias=True)
)
softamx和交叉熵损失函数
#pytorch提供了一个包括softmax预算和交叉熵损失计算的函数
loss = nn.CrossEntropyLoss()
定义优化算法
optimizer = torch.optim.SGD(net.parameters(),lr=0.1)
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
训练模型
num_epochs, lr = 5, 0.1
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()
# 梯度清零
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
if optimizer is None:
# 上节的代码optimizer is None,使用的手写的代码SGD
sgd(params, lr, batch_size)
else:
# optimizer 非None,
optimizer.step() # “softmax回归的简洁实现”一节将用到
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None,optimizer)
epoch 1, loss 0.0031, train acc 0.749, test acc 0.765
epoch 2, loss 0.0022, train acc 0.813, test acc 0.808
epoch 3, loss 0.0021, train acc 0.826, test acc 0.818
epoch 4, loss 0.0020, train acc 0.832, test acc 0.816
epoch 5, loss 0.0019, train acc 0.837, test acc 0.821
动手学深度学习8-softmax分类pytorch简洁实现的更多相关文章
- 动手学深度学习9-多层感知机pytorch
多层感知机 隐藏层 激活函数 小结 多层感知机 之前已经介绍过了线性回归和softmax回归在内的单层神经网络,然后深度学习主要学习多层模型,后续将以多层感知机(multilayer percetro ...
- 小白学习之pytorch框架(2)-动手学深度学习(begin-random.shuffle()、torch.index_select()、nn.Module、nn.Sequential())
在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比 ...
- 对比《动手学深度学习》 PDF代码+《神经网络与深度学习 》PDF
随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点.AlphaGo背后的工作原理"深度学习"也跳入大众的视野.什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中 ...
- 【动手学深度学习】Jupyter notebook中 import mxnet出错
问题描述 打开d2l-zh目录,使用jupyter notebook打开文件运行,import mxnet 出现无法导入mxnet模块的问题, 但是命令行运行是可以导入mxnet模块的. 原因: 激活 ...
- 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...
- 动手学深度学习7-从零开始完成softmax分类
获取和读取数据 初始化模型参数 实现softmax运算 定义模型 定义损失函数 计算分类准确率 训练模型 小结 import torch import torchvision import numpy ...
- 动手学深度学习14- pytorch Dropout 实现与原理
方法 从零开始实现 定义模型参数 网络 评估函数 优化方法 定义损失函数 数据提取与训练评估 pytorch简洁实现 小结 针对深度学习中的过拟合问题,通常使用丢弃法(dropout),丢弃法有很多的 ...
- 动手学深度学习6-认识Fashion_MNIST图像数据集
获取数据集 读取小批量样本 小结 本节将使用torchvision包,它是服务于pytorch深度学习框架的,主要用来构建计算机视觉模型. torchvision主要由以下几个部分构成: torchv ...
- 动手学深度学习1- pytorch初学
pytorch 初学 Tensors 创建空的tensor 创建随机的一个随机数矩阵 创建0元素的矩阵 直接从已经数据创建tensor 创建新的矩阵 计算操作 加法操作 转化形状 tensor 与nu ...
随机推荐
- gitea/gogs在push操作时报RPC failed的问题
原文发布于:https://www.chenxublog.com/2019/05/26/gitea-gogs-push-rpc-failed.html 最近川普在搞出口管制,GitHub也更新了相应的 ...
- WPF 有任何Focus问题,就找 Keyboard_Navigation
牛牛的博客 https://www.cnblogs.com/smallidea/p/3412699.html 参照官网教程: https://docs.microsoft.com/en-us/dotn ...
- 解决FastCGI 进程超过了配置的活动超时时限的问题
近日,需要满足测试需求,进行大数据并发测试时,报出[HTTP 错误 500.0 - Internal Server Error E:\PHP\php-cgi.exe - FastCGI 进程超过了配置 ...
- Java常用类Date相关知识
Date:类 Date 表示特定的瞬间,精确到毫秒. 在 JDK 1.1 之前,类 Date 有两个其他的函数.它允许把日期解释为年.月.日.小时.分钟和秒值.它也允许格式化和解析日期字符串. Dat ...
- mysql判断是否包含某个字符的方法
mysql判断是否包含某个字符的方法用locate 是最快的,like 最慢.position一般实战例子:select * from historydatawhere locate('0',open ...
- html跳转,获取get提交参数
html跳转到html页面,url后面携带参数,可以通过脚本获取到url?test=value地址后的参数. 1.more.html 携带参数跳转到list.html,get提交参数 2.list.h ...
- SAP 如何得到交货单上的序列号清单?
SAP 如何得到交货单上的序列号清单? 以内向交货单为例(外向交货单方法了类似)予以说明. 1)VL33N,在交货单显示界面, 但是没办法通过这个界面里导出序列号清单. 2),只能通过查表的方式导出序 ...
- maven 学习---转换基于Maven的Web应用程序支持Eclipse IDE
在上一节教程中,使用Maven创建了一个Web应用程序.这里有一个指南,告诉你如何转换Web应用程序到Eclipse IDE支持的形式. 注意,通过WTP工具Eclipse IDE支持Web应用程序, ...
- 单点登录,系统B如何辨别用户已登录系统A
首先系统A去访问受限资源,跳转到sso认证中心https://login.sso.com/login?redirectURL=https://www.a.com/center,用户登录成功之后,sso ...
- MAC盗版软件下载网站黑名单
上面有大量的开源软件或者免费软件,拒绝盗版从我做起, 下面被删除的网站提供大量破解软件下载,欢迎大家监督它们. 玩转苹果:http://www.ifunmac.com Mac软件下载站:http:// ...