朴素贝叶斯与逻辑回归的区别:

朴素贝叶斯

逻辑回归

生成模型(Generative model)

判别模型(Discriminative model)

对特征x和目标y的联合分布P(x,y)建模,使用极大后验概率估计法估计出最有可能的P(y|x)

直接对后验概率P(y|x)建模,使用极大似然估计法使其最大化

不需要优化参数,先用极大似然估计法估计出先验概率P(y)和条件概率P(x|y),然后计算出极大后验概率P(y|x)

需要优化参数,先用极大似然估计法得出损失函数,再用梯度下降法等优化参数

假设特征之间相互独立,对于不相互独立的特征,朴素贝叶斯的分类效果会差一些

不必假设特征之间是相互独立的,对于不相互独立的特征,逻辑回归会在训练过程中对参数自动调整

Andrew Ng和Michael Jordan在2001年发了一篇NIPS短文《 On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes 》,他们把这两个模型在各种数据集上面进行测试,最后得到在小数据上Naive bayes可以取得更好的效果,随着数据的增多、特征维度的增大,Logistic regression的效果更好。这是因为Naive bayes是生成模型,假设训练数据服从某种分布,在有prior的情况下模型能够把数据fit的更好,但是随着数据量的增多,prior对整个数据后验概率分布的影响逐渐降低。而Logistic regression属于判别模型,不去建模联合概率,通过训练数据直接预测输出,因此在数据足够多的情况下能够得到更好一些的效果。

机器学习---朴素贝叶斯与逻辑回归的区别(Machine Learning Naive Bayes Logistic Regression Difference)的更多相关文章

  1. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

  2. spark 机器学习 朴素贝叶斯 实现(二)

    已知10月份10-22日网球场地,会员打球情况通过朴素贝叶斯算法,预测23,24号是否适合打网球.结果,日期,天气 温度 风速结果(0否,1是)天气(0晴天,1阴天,2下雨)温度(0热,1舒适,2冷) ...

  3. spark 机器学习 朴素贝叶斯 原理(一)

    朴素贝叶斯算法仍然是流行的挖掘算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失.是否值得投资.信用等级评定等多分类问题.该算法的优点在于简单易懂.学习效率高.在某些领域的分类问题中 ...

  4. Python之机器学习-朴素贝叶斯(垃圾邮件分类)

    目录 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 模块导入 文本预处理 遍历邮件 训练模型 测试模型 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 邮箱训练集可以加我微信:nickchen121 ...

  5. 机器学习朴素贝叶斯 SVC对新闻文本进行分类

    朴素贝叶斯分类器模型(Naive Bayles) Model basic introduction: 朴素贝叶斯分类器是通过数学家贝叶斯的贝叶斯理论构造的,下面先简单介绍贝叶斯的几个公式: 先验概率: ...

  6. 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)

    朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...

  7. 机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)

    最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logis ...

  8. xss  多分类 优选 贝叶斯、逻辑回归、决策树

    import re import numpy as np from sklearn import cross_validation from sklearn import datasets from ...

  9. NLP系列(4)_朴素贝叶斯实战与进阶

    作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 htt ...

随机推荐

  1. HBase 系列(一)—— HBase 简介

    一.Hadoop的局限 HBase 是一个构建在 Hadoop 文件系统之上的面向列的数据库管理系统. 要想明白为什么产生 HBase,就需要先了解一下 Hadoop 存在的限制?Hadoop 可以通 ...

  2. 四则运算自动出题之javaweb版

    四则运算出题机之JAVAWEB版 要求还是和之前的出题形式一样 begin.jpg <%@ page language="java" contentType="te ...

  3. java之spring mvc之Controller配置的几种方式

    这篇主要讲解 controller配置的几种方式. 1. URL对应 Bean 如果要使用此类配置方式,需要在XML中做如下样式配置 <!-- 配置handlerMapping --> & ...

  4. 分享AWS网站

    1.AWS服务运行状况检测网站:   https://status.amazonaws.cn/ 2.AWS架构白皮书:https://aws.amazon.com/cn/architecture/?a ...

  5. java基本结构

    前言 Java文件的运行过程: 1,javac.exe:编译器 2,java.exe:解释器 微软shell下运行实例: C:\Users\Administrator>cd D:\文档\JAVA ...

  6. Java框架之MyBatis框架(二)

    Mybatis框架是相对于优化dao层的框架,其有效的减少了频繁的连接数据库(在配置文件xml中进行配置),将sql语句与java代码进行分离(写在XXXXmapper.xml文件中,一个表对应一个x ...

  7. Dockerfile 基本命令

    1. 前言 Dockerfile 是用来构建自定义 Docker 镜像的文本文档.我们通过docker build 命令用于从Dockerfile 文件构建镜像.如果你要构建自定义镜像,Dockerf ...

  8. Appscan漏洞之已解密的登录请求

    本次针对 Appscan漏洞 已解密的登录请求 进行总结,如下: 1.1.攻击原理 未加密的敏感信息(如登录凭证,用户名.密码.电子邮件地址.社会安全号等)发送到服务器时,任何以明文传给服务器的信息都 ...

  9. redis设置远程连接

    1.修改redis服务器的配置文件 本机安装的redis-4.0.14默认的配置文件 redis.conf 设置 绑定本机地址:bind 127.0.0.1 开启保护模式:protected-mode ...

  10. 【知识点整理】Oracle中NOLOGGING、APPEND、ARCHIVE和PARALLEL下,REDO、UNDO和执行速度的比较

    [知识点整理]Oracle中NOLOGGING.APPEND.ARCHIVE和PARALLEL下,REDO.UNDO和执行速度的比较 1  BLOG文档结构图 2  前言部分 2.1  导读和注意事项 ...