朴素贝叶斯与逻辑回归的区别:

朴素贝叶斯

逻辑回归

生成模型(Generative model)

判别模型(Discriminative model)

对特征x和目标y的联合分布P(x,y)建模,使用极大后验概率估计法估计出最有可能的P(y|x)

直接对后验概率P(y|x)建模,使用极大似然估计法使其最大化

不需要优化参数,先用极大似然估计法估计出先验概率P(y)和条件概率P(x|y),然后计算出极大后验概率P(y|x)

需要优化参数,先用极大似然估计法得出损失函数,再用梯度下降法等优化参数

假设特征之间相互独立,对于不相互独立的特征,朴素贝叶斯的分类效果会差一些

不必假设特征之间是相互独立的,对于不相互独立的特征,逻辑回归会在训练过程中对参数自动调整

Andrew Ng和Michael Jordan在2001年发了一篇NIPS短文《 On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes 》,他们把这两个模型在各种数据集上面进行测试,最后得到在小数据上Naive bayes可以取得更好的效果,随着数据的增多、特征维度的增大,Logistic regression的效果更好。这是因为Naive bayes是生成模型,假设训练数据服从某种分布,在有prior的情况下模型能够把数据fit的更好,但是随着数据量的增多,prior对整个数据后验概率分布的影响逐渐降低。而Logistic regression属于判别模型,不去建模联合概率,通过训练数据直接预测输出,因此在数据足够多的情况下能够得到更好一些的效果。

机器学习---朴素贝叶斯与逻辑回归的区别(Machine Learning Naive Bayes Logistic Regression Difference)的更多相关文章

  1. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

  2. spark 机器学习 朴素贝叶斯 实现(二)

    已知10月份10-22日网球场地,会员打球情况通过朴素贝叶斯算法,预测23,24号是否适合打网球.结果,日期,天气 温度 风速结果(0否,1是)天气(0晴天,1阴天,2下雨)温度(0热,1舒适,2冷) ...

  3. spark 机器学习 朴素贝叶斯 原理(一)

    朴素贝叶斯算法仍然是流行的挖掘算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失.是否值得投资.信用等级评定等多分类问题.该算法的优点在于简单易懂.学习效率高.在某些领域的分类问题中 ...

  4. Python之机器学习-朴素贝叶斯(垃圾邮件分类)

    目录 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 模块导入 文本预处理 遍历邮件 训练模型 测试模型 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 邮箱训练集可以加我微信:nickchen121 ...

  5. 机器学习朴素贝叶斯 SVC对新闻文本进行分类

    朴素贝叶斯分类器模型(Naive Bayles) Model basic introduction: 朴素贝叶斯分类器是通过数学家贝叶斯的贝叶斯理论构造的,下面先简单介绍贝叶斯的几个公式: 先验概率: ...

  6. 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)

    朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...

  7. 机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)

    最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logis ...

  8. xss  多分类 优选 贝叶斯、逻辑回归、决策树

    import re import numpy as np from sklearn import cross_validation from sklearn import datasets from ...

  9. NLP系列(4)_朴素贝叶斯实战与进阶

    作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 htt ...

随机推荐

  1. nacos初探--作为配置中心

    什么是nacos Nacos 支持基于 DNS 和基于 RPC 的服务发现(可以作为springcloud的注册中心).动态配置服务(可以做配置中心).动态 DNS 服务. 官方介绍是这样的: Nac ...

  2. [golang]svg图片默认按照左上角旋转,改为按中心旋转,重新计算中心偏移量

    1 前言 svg图片默认按照左上角旋转,改为按中心旋转,重新计算中心偏移量 2 代码 type Point struct { X float64 Y float64 } func GetOffsetX ...

  3. np.newaxis的使用及有趣的数组相乘

    a=np.array([1,2,3,4])a=a[np.newaxis,:] #固定行,相当于1行多列b=np.array([2,4,6]) b=b[:,np.newaxis] #固定列,相当与多行1 ...

  4. 2019-07-25 php错误级别及设置方法

    在php的开发过程里,我们总是会有一系列的错误警告,这些错误警告在我们开发的过程中是十分需要的,因为它能够提示我们在哪里出现了错误,以便修改和维护.但在网站开发结束投入使用时,这些报错我们就要尽量避免 ...

  5. Java GC的工作原理详解

    JVM学习笔记之JVM内存管理和JVM垃圾回收的概念,JVM内存结构由堆.栈.本地方法栈.方法区等部分组成,另外JVM分别对新生代下载地址  和旧生代采用不同的垃圾回收机制. 首先来看一下JVM内存结 ...

  6. TypeScript基础以及在Vue中的应用

    TypeScript推出已经很长时间了,在Angular项目中开发比较普遍,随着Vue 3.0的即将推出,TypeScript在Vue项目中使用也即将成为很大的趋势,笔者也是最近才开始研究如何在Vue ...

  7. 基于MUI框架+HTML5PLUS 开发 iOS和Android 应用程序(APP)

    目录 事前准备 创建项目 利用MUI写一个简单的页面 关于文件打包 事前准备 # 软件 HBuilder X Web开发IDE 下载地址:https://www.dcloud.io/hbuilderx ...

  8. CSS-服务器端字体笔记

    服务器端字体 在CSS3中可以使用@font-face属性来利用服务器端字体. @font-face 属性的使用方法:  @font-face{ font-family:webFont; src:ur ...

  9. Xcode调试打印方法

    1 NSLog 在调试的过程中,最常用的查看变量值的方法是NSLog 整数 int a = 1; NSLog("%d", a); 浮点数 float b = 1.11; NSLog ...

  10. php exec执行视频图片转换

    首先安装ffmpeg <?php set_time_limit(0) ; $cmd = "ffmpeg -i 'input/3.mp4' -r 1 -q:v 2 -f image2 i ...