目录

  举例

  单个张量与多个卷积核的分离卷积

  参考资料


举例

分离卷积就是先在深度上分别卷积,然后再进行卷积,对应代码为:

import tensorflow as tf

# [batch, in_height, in_width, in_channels]
input =tf.reshape(tf.constant([2,5,3,3,8,2,6,1,1,2,5,4,7,9,2,3,-1,3], tf.float32),[1,3,3,2]) # [filter_height, filter_width, in_channels, out_channels]
depthwise_filter = tf.reshape(tf.constant([3,1,-2,2,-1,-3,4,5], tf.float32),[2,2,2,1])
pointwise_filter = tf.reshape(tf.constant([-1,1], tf.float32),[1,1,2,1]) print(tf.Session().run(tf.nn.separable_conv2d(input,depthwise_filter,pointwise_filter,[1,1,1,1],"VALID")))
[[[[ 20.]
[ 9.]] [[-24.]
[ 29.]]]]

返回目录

单个张量与多个卷积核的分离卷积

对应代码为:

import tensorflow as tf

# [batch, in_height, in_width, in_channels]
input =tf.reshape(tf.constant([2,5,3,3,8,2,6,1,1,2,5,4,7,9,2,3,-1,3], tf.float32),[1,3,3,2]) # [filter_height, filter_width, in_channels, out_channels]
depthwise_filter = tf.reshape(tf.constant([3,1,-3,1,-1,7,-2,2,-5,2,7,3,-1,3,1,-3,-8,6,4,6,8,5,9,-5], tf.float32),[2,2,2,3])
pointwise_filter = tf.reshape(tf.constant([0,0,1,0,0,1,0,0,0,0,0,0], tf.float32),[1,1,6,2]) print(tf.Session().run(tf.nn.separable_conv2d(input,depthwise_filter,pointwise_filter,[1,1,1,1],"VALID")))
[[[[ 32. -7.]
[ 52. -8.]] [[ 41. 0.]
[ 11. -34.]]]]

返回目录

参考资料

《图解深度学习与神经网络:从张量到TensorFlow实现》_张平

返回目录

深度学习面试题25:分离卷积(separable卷积)的更多相关文章

  1. 深度学习面试题10:二维卷积(Full卷积、Same卷积、Valid卷积、带深度的二维卷积)

    目录 二维Full卷积 二维Same卷积 二维Valid卷积 三种卷积类型的关系 具备深度的二维卷积 具备深度的张量与多个卷积核的卷积 参考资料 二维卷积的原理和一维卷积类似,也有full卷积.sam ...

  2. 深度学习面试题27:非对称卷积(Asymmetric Convolutions)

    目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减 ...

  3. 深度学习面试题29:GoogLeNet(Inception V3)

    目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深 ...

  4. 深度学习面试题13:AlexNet(1000类图像分类)

    目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是 ...

  5. 深度学习面试题24:在每个深度上分别卷积(depthwise卷积)

    目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于c ...

  6. 深度学习面试题16:小卷积核级联卷积VS大卷积核卷积

    目录 感受野 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 小卷积核的优势 参考资料 感受野 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(fe ...

  7. 深度学习面试题09:一维卷积(Full卷积、Same卷积、Valid卷积、带深度的一维卷积)

    目录 一维Full卷积 一维Same卷积 一维Valid卷积 三种卷积类型的关系 具备深度的一维卷积 具备深度的张量与多个卷积核的卷积 参考资料 一维卷积通常有三种类型:full卷积.same卷积和v ...

  8. 深度学习面试题26:GoogLeNet(Inception V2)

    目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separab ...

  9. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

随机推荐

  1. 根据值获取枚举类对象工具类EnumUtils

    枚举类 public enum Sex { man("M","男"),woman("W","女"); private S ...

  2. python代码工具小结

    目录: 1.with读.写文件 (1)with读文件 (2)with写文件 2.requests爬虫 (1)get请求 (2)post请求 1.with读.写文件 (1)with读文件 (2)with ...

  3. 使用OpenLiveWriter来写博客

    话不多说,首先是下载http://openlivewriter.org/,安装. 博客配置,我是使用博客园,配置如下: 确保博客园自己后台账号"设置"中的"推荐客户端&q ...

  4. uWSGI+django+nginx的工作原理流程与部署历程

    一.前言献给和我一样懵懂中不断汲取知识,进步的人们. 霓虹闪烁,但人们真正需要的,只是一个可以照亮前路的烛光 二.必要的前提2.1 准备知识 django一个基于python的开源web框架,请确保自 ...

  5. 【Bug】MQ消息与事务提交

    项目联调期间,遇到个bug,涉及MQ消息传递和事务提交时间问题,简单记录下. 背景 审核服务(审核创建项目),点击审核通过,后台代码会在提交事务前发送MQ消息(该消息由项目管理服务消费),发送成功后, ...

  6. [ipsec][strongswan] strongswan源码分析--(一)SA整体分析

    strongswan SA分析(一) 1 概念 下面主要介绍两个本文将要阐述的核心概念.他们是SA和SP.注意,这不是一篇不需要背景知识的文章.作者认为你适合阅读接下来内容的的前提是,你已经具备了一下 ...

  7. swagger是什么OpenAPI是什么

    wiki: https://en.wikipedia.org/wiki/OpenAPI_Specification 官网: https://swagger.io/specification/

  8. 【Flask】 python学习第一章 - 3.0 正则转换和错误捕捉

    3.1正则转换器定义 Class RegexConverter(BaseConverter): regex = "[0-9]{6}" app.url_map.converters[ ...

  9. Linux操作系统的文件查找工具locate和find命令常用参数介绍

    Linux操作系统的文件查找工具locate和find命令常用参数介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.非实时查找(数据库查找)locate工具  locate命 ...

  10. tomcat 使用quercus-4.0.39 支持PHP

    tomcat  使用quercus-4.0.39  支持PHP   Quercus是Caucho公司采用纯Java开发的一个PHP5引擎.基于开源授权协议GPL发布.Quercus自带很多个PHP模块 ...