2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)
题意:求Σfi^m%p。 zoj上p是1e9+7,牛客是1e9; 对于这两个,分别有不同的做法。
前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可。 后者mod=1e9,5才mod下没有二次剩余,所以不能这么做了。可以分解mod,然后利用循环节搞。
zoj:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = ;
const LL MOD = ;
LL fac[N],A[N],B[N];
void Init()
{
fac[] = ;
for(int i=; i<N; i++)
fac[i] = fac[i-] * i % MOD;
A[] = B[] = ;
for(int i=; i<N; i++)
{
A[i] = A[i-] * % MOD;
B[i] = B[i-] * % MOD;
}
}
LL quick_mod(LL a,LL b,LL MOD)
{
LL ans = ;
a %= MOD;
while(b){
if(b&){
ans = ans * a % MOD;
b--;
}
b>>=; a = a * a % MOD;
}
return ans;
} LL Solve(LL n,LL k)
{
LL ans = ;
for(int r=; r<=k; r++)
{
LL t = A[k-r] * B[r] % MOD;
LL x = fac[k];
LL y = fac[k-r] * fac[r] % MOD;
LL c = x * quick_mod(y,MOD-,MOD) % MOD;
LL tmp = t * (quick_mod(t,n,MOD) - ) % MOD * quick_mod(t-,MOD-,MOD) % MOD;
if(t == ) tmp = n % MOD;
tmp = tmp * c % MOD;
if(r & ) ans -= tmp;
else ans += tmp;
ans %= MOD;
}
LL m = quick_mod(,MOD-,MOD);
ans = ans * quick_mod(m,k,MOD) % MOD;
ans = (ans % MOD + MOD) % MOD;
return ans;
} int main()
{
int T;
LL n,k;
Init();
scanf("%d",&T);
while(T--)
{
cin>>n>>k;
cout<<Solve(n,k)<<endl;
}
return ;
}
牛客: 你可以不熟悉斐波拉契的循环节具体怎么求,但是只要知道mod=p^a,fib[]%mod的循环节小于p^(a-1)* (2*p+2)。
而1e9计较特殊,1e9=2^9*5^9,这两部分对应的循环节都不是很大,所以我们可以分别求,然后中国剩余定理合并啊,就可以水过去了。
(但是我的代码怎么这么慢啊
#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int Mod=1e9;
int md[]={,};
int f[],ans[];
int qpow(int a,int x,int p)
{
int res=; while(x){
if(x&) res=1LL*res*a%p;
x>>=; a=1LL*a*a%p;
} return res;
}
void exgcd(int a,int b,int &x,int &y)
{
if(b==){ x=; y=; return;}
exgcd(b,a%b,y,x); y-=a/b*x;
}
int rev(int a,int b)
{
int x,y; exgcd(a,b,x,y);
x=(x%b+b)%b; return x;
}
int main()
{
int N,M;
scanf("%d%d",&N,&M);
rep(k,,) {
f[]=; f[]=; int j=;
for(;;j++){
f[j]=(f[j-]+f[j-]);
if(f[j]>=md[k]) f[j]-=md[k];
if(f[j]==&&f[j-]==) {
j--; break;
}
}
int P=N/j;
for(int i=;i<j;i++) {
int t=qpow(f[i],M,md[k]);
ans[k]=(ans[k]+1LL*t*(P+(i<=N%j)))%md[k];
}
}
int res=(1LL*ans[]*md[]%Mod*rev(md[],md[])%Mod+1LL*ans[]*md[]%Mod*rev(md[],md[])%Mod)%Mod;
printf("%d\n",res);
return ;
}
2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)的更多相关文章
- 2019牛客暑期多校训练营(第九场) D Knapsack Cryptosystem
题目 题意: 给你n(最大36)个数,让你从这n个数里面找出来一些数,使这些数的和等于s(题目输入),用到的数输出1,没有用到的数输出0 例如:3 4 2 3 4 输出:0 0 1 题解: 认真想一 ...
- 2019牛客暑期多校训练营(第二场) H-Second Large Rectangle(单调栈)
题意:给出由01组成的矩阵,求求全是1的次大子矩阵. 思路: 单调栈 全是1的最大子矩阵的变形,不能直接把所有的面积存起来然后排序取第二大的,因为次大子矩阵可能在最大子矩阵里面,比如: 1 0 0 1 ...
- 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题)
layout: post title: 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题) author: "luowentaoaa" c ...
- [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem
链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...
- 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)
链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...
- 2019牛客暑期多校训练营(第一场) B Integration (数学)
链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...
- 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)
链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...
- 2019牛客暑期多校训练营(第二场)F.Partition problem
链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...
- 2019牛客暑期多校训练营(第八场)E.Explorer
链接:https://ac.nowcoder.com/acm/contest/888/E来源:牛客网 Gromah and LZR have entered the fifth level. Unli ...
随机推荐
- 将Javabean转化JSONObject为对象
JSONObject.parseObject(JSONObject.toJSON(obj).toString()):
- centos中更新glibc库文件到2.17
1 确保安装过gcc yum install gcc 2 获取glibc相关版本 wget http://ftp.gnu.org/pub/gnu/glibc/glibc-2.17.tar.xz 3 解 ...
- 避免maven package 打包时执行 mybatis-generator-maven-plugin 插件
一.为什么打包时会执行该插件mybatis-generator-maven-plugin默认绑定了package的生命周期 二.如何解决如果在package和install 执行插件,修改pom中的配 ...
- 【题解】Luogu P5327 [ZJOI2019]语言
原题传送门 看到这种树上统计点对个数的题一般是线段树合并,这题也不出意外 先对这棵树进行树剖,对于每次普及语言,在\(x,y\)两点的线段树上的\(x,y\)两位置打\(+1\)标记,在点\(fa[l ...
- JWT与RBAC权限模型
JWT JWT是什么? Json web token (JWT)是为了网络应用环境间传递声明而执行的一种基于JSON的开发标准(RFC7519),该token被设计为紧凑且安全的,特别适用于分布式站点 ...
- laravel中hasOne、HasMany、belongsTo、belongsToMany的ORM方法
在laravel5.4框架中,使用ORM关联方法,一对一,一对多 一对一关系,代码: user表为主表,需要向下找关联表的字段用hasOne video表为关联表,需要向上找关联表的字段用belong ...
- mysql存储过程的函数
存储过程和函数:类似java中的方法 好处:提高代码的重用性 .简化操作.减少了和数据库连接的次数,提高了效率 含义:一组预先编译好的sql语句集合,成批处理语句 语法: 一:创建语法 create ...
- .net list转树状结构
主要的方法 /// <summary> /// 转化成树结构 /// </summary> /// <param name="menuList"> ...
- Kubernetes(k8s)网络插件(CNI)的基准测试对比
Kubernetes是一个伟大的容器"乐队".但它不管理Pod-to-Pod通信的网络.这是容器网络接口(CNI)插件的使命,它是实现容器集群工具(Kubernetes,Mes ...
- systemd - CentOS 7进程守护&监控
需求: 运行环境为CentOS 7系统,我们开发了一个程序,需要在开机时启动它,当程序进程crash或者开机之后,守护进程立即拉起进程. 解决方案: 使用CentOS 7中的init进程systemd ...