【洛谷】P4167 [Violet]樱花
题面
分析
人生第一次切数学题,我们先把方程写出来
$$\frac {1}{x}+\frac {1}{y}=\frac {1}{n!}$$
现在我们知道的条件是x,y都是正整数(废话 所以我们考虑单独通过式子的变换将x,y表示出来,表示出来的式子算出来也一定是个整数
$$\frac {1}{x}+\frac {1}{y}=\frac {1}{n!}$$
$$\frac {1}{x}=\frac {1}{n!}-\frac{1}{y}$$
$$\frac {1}{x}=\frac {y-n!}{n!\times y}$$
$$x=\frac {n!\times y}{y-n!}$$
那么$\frac {n!\times y}{y-n!}$一定是一个整数
分母不太好看,不利于观察,所以假设$a=y-n!$,那么$y=a+n!$
那么原方程可以化简为
$$x=\frac {n!\times (a+n!)}{a}=\frac {n!\times a+n!\times n!}{a}=n!+\frac {n!\times n!}{a}$$
所以,如果$a$是$n!\times n!$的约数,根据$y=a+n!$与$x=n!+\frac {n!\times n!}{a}$可以知道x,y都是正整数
所以$n!\times n!$有多少个约数就有多少组解,直接分解质因数然后乘法原理计算就好了
Code
#include<cstdio>
int n,p[],unp[],mn[],mp[];
void prework()
{
unp[]=;
for(int i=;i<=;i++)
{
if(!unp[i])p[++p[]]=i,mn[i]=p[];
for(int j=;1ll*p[j]*i<=;j++)
{
unp[p[j]*i]=;mn[p[j]*i]=j;
if(i%p[j]==)break;
}
}
}
int main()
{
prework();scanf("%d",&n);
for(int i=;i<=n;i++)
{
int x=i;
while(x>)mp[p[mn[x]]]++,x/=p[mn[x]];
}
int ans=;
for(int i=;i<=n;i++)ans=1ll*ans*(mp[i]*+)%;
printf("%d\n",ans);
}
【洛谷】P4167 [Violet]樱花的更多相关文章
- 洛谷P1445 [Violet] 樱花 (数学)
洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...
- BZOJ2721或洛谷1445 [Violet]樱花
BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...
- 【题解】洛谷P1445 [Violet]樱花 (推导+约数和)
洛谷P1445:https://www.luogu.org/problemnew/show/P1445 推导过程 1/x+1/y=1/n! 设y=n!+k(k∈N∗) 1/x+1/(n!+k)=1 ...
- 洛谷 P1445 [Violet]樱花
#include<cstdio> #include<algorithm> #include<cstring> #include<vector> usin ...
- Luogu P1445[Violet]樱花/P4167 [Violet]樱花
Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...
- 洛谷 P4169 [Violet]天使玩偶/SJY摆棋子 解题报告
P4169 [Violet]天使玩偶/SJY摆棋子 题目描述 \(Ayu\)在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,\(Ayu\) 却忘了她把天使玩偶埋在了哪 ...
- 洛谷 P4168 [Violet]蒲公英 解题报告
P4168 [Violet]蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多 ...
- 洛谷P4169 [Violet]天使玩偶/SJY摆棋子(CDQ分治)
[Violet]天使玩偶/SJY摆棋子 题目传送门 解题思路 用CDQ分治开了氧气跑过. 将输入给的顺序作为第一维的时间,x为第二维,y为第三维.对于距离一个询问(ax,ay),将询问分为四块,左上, ...
- 洛谷 P4168 [Violet] 蒲公英
历尽千辛万苦终于AC了这道题目... 我们考虑1个区间\([l,r]\), 被其完整包含的块的区间为\([L,R]\) 那么众数的来源? 1.\([l,L)\)或\((R,r]\)中出现的数字 2.\ ...
随机推荐
- Mycat分布式数据库架构解决方案--Server.xml详解
echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!!! 该文件 ...
- CDH构建大数据平台-使用自建的镜像地址安装Cloudera Manager
CDH构建大数据平台-使用自建的镜像地址安装Cloudera Manager 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.搭建CM私有仓库 详情请参考我的笔记: http ...
- Mongodb的主从复制
主从服务器的实现原理 首先,主节点会把本服务的与写有关的操作记录下来,读操来不记录,这些操作就记录在local数据库中的oplog.$admin这个集合中,这是一个固定集合,大小是可以配置的,主要是通 ...
- S3cmd
一:安装方法 #wget http://nchc.dl.sourceforge.net/project/s3tools/s3cmd/1.0.0/s3cmd-1.0.0.tar.gz #tar -zxf ...
- SourceTree&Git -01 -代码拉取推送流程 -提交时的相关注意事项
1.进行文件的暂存,忽略不提交的文件 防止自己的文件从仓库拉取时被覆盖掉 2.获取,然后从仓库拉取内容 (勾选被合并提交的内容) 先获取,可以防止冲突的发生 3.推送自己暂存的文件 推送失败,请再次进 ...
- 关于使用scipy.stats.lognorm来模拟对数正态分布的误区
lognorm方法的参数容易把人搞蒙.例如lognorm.rvs(s, loc=0, scale=1, size=1)中的参数s,loc,scale, 要记住:loc和scale并不是我们通常理解的对 ...
- Caused by: java.io.IOException: 你的主机中的软件中止了一个已建立的连接。
org.apache.catalina.connector.ClientAbortException: java.io.IOException: 你的主机中的软件中止了一个已建立的连接. at org ...
- grep命令的or,and,not操作的例子
在Linux的grep命令中如何使用OR,AND,NOT操作符呢? 其实,在grep命令中,有OR和NOT操作符的等价选项,但是并没有grep AND这种操作符.不过呢,可以使用patterns来模拟 ...
- python - django (logging 日志配置和简单使用)
1. settings 配置 # 配置日志 LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'formatters': { 's ...
- Django REST framework认证权限和限制和频率
认证.权限和限制 身份验证是将传入请求与一组标识凭据(例如请求来自的用户或其签名的令牌)相关联的机制.然后 权限 和 限制 组件决定是否拒绝这个请求. 简单来说就是: 认证确定了你是谁 权限确定你能不 ...