TJOI 2015 概率论(生成函数)
题意
求一棵随机生成的有根二叉树(节点无标号,各种不同构的情况随机出现)叶子结点个数的期望。
思路
用生成函数做是个好题。
我们考虑设 \(n\) 个节点,所有不同构二叉树叶子结点的总和为 \(f_n\) 。首先,\(n\) 个节点的无标号有根二叉树种类数为 \(C_n\) ,其中 \(C_n\) 表示卡特兰数。那么递推式比较显然
\[
\begin{align*}
f_n&=\sum_{i=0}^{n-1}f_{i}C_{n-1-i}+f_{n-1-i}C_i\\
&=2\sum_{i=0}^{n-1} f_iC_{n-1-i}
\end{align*}
\]
特别的 \(f_0=0, f_1=1\) (求递推一定要考虑特殊情况,往往前面几项不满足递推)。
我们设数列 \(\{f_n\}\) 的生成函数为 \(F(x)\) , 数列 \(\{C_n\}\) 的生成函数为 \(G(x)\) 。
观察递推式,我们由卡特兰数递推的生成函数推导得到启发,可以将 \(F(x)\) 乘上 \(G(x)\) 。
\[
\begin{align*}
F(x)G(x)&=f_0C_0x^0+(f_0C_1+f_1C_0)x^1+(f_0C_2+f_1C_1+f_2C_0)x^2+\cdots\\
&=f_0C_0x^0+{f_2\over 2}x^1+{f_3\over 2}x^2+{f_4\over 2}x^3+\cdots\\
&={f_2x^1+f_3x^2+f_4x^3+\cdots\over2}\\
&={F(x)-(f_0x^0-f_1x^1)\over 2x}\\
&={F(x)-x\over 2x}\\
\end{align*}
\]
解得
\[
F(x)={1\over 1-2xG(x)}
\]
而卡特兰数的生成函数 \(G(x)\) 等于 \(\displaystyle{1-(1-4x)^{1\over 2}\over 2x}\)
代入得到
\[
\begin{align*}
F(x)&={x\over {\sqrt{1-4x}}}\\
&=x(1-4x)^{-{1\over 2}}
\end{align*}
\]
进行广义二项式展开
\[
\begin{align*}
F(x)&=x\sum_{i=0}^{+\infty}{-{1\over 2}\choose i}(-4x)^i\\
&=x\sum_{i=0}^{+\infty}{(-{1\over 2})\times(-{3\over 2})\times\cdots\times(-{2i-1\over 2})\over i!}(-4x)^i\\
&=x\sum_{i=0}^{+\infty}{2^i\times1\times3\times\cdots\times(2i-1)\over i!}x^i\\
&=x\sum_{i=0}^{+\infty}{2^i\times{2i!\over 2^ii!}\over i!}x^i\\
&=x\sum_{i=0}^{+\infty}{2i!\over i! i!}x^i\\
&=\sum_{i=0}^{+\infty}{2i\choose i}x^{i+1}\\
&=\sum_{i=1}^{+\infty}{2i-2\choose i-1}x^i\\
\end{align*}
\]
于是我们得到了
\[
f_n=\begin{cases}
\displaystyle{2n-2\choose n-1}&n>0\\
0&n=0
\end{cases}
\]
题目要求的,其实就是 \(\displaystyle{f_n\over C_n}\) ,即当 \(n=0\) 时,答案为 \(0\) ;否则答案为 \(\displaystyle{2n-2\choose n-1}\over \displaystyle{{1\over n+1}{2n\choose n}}\) 。
简化一下,变成了 \(\displaystyle {n(n+1)\over 4n-2}\) ,这就是最终的答案。
代码
输入 \(n\) ,输出 \(\displaystyle {n(n+1)\over 4n-2}\) 就行了,要什么代码??
TJOI 2015 概率论(生成函数)的更多相关文章
- 【bzoj4001】[TJOI2015]概率论 生成函数+导数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 题解 生成函数+导数 先考虑节点个数为$n ...
- BZOJ 3998 [TJOI 2015] 弦论 解题报告
这是一道后缀自动机经典题目. 对于 $t=0$ 的情况:每个节点都代表一个子串,所以我们给每个节点的 $Size$ 都记为 $1$, 对于 $t=1$ 的情况:我们只给 $last$ 节点的 $Siz ...
- BZOJ 3997 [TJOI 2015 组合数学] 解题报告
这个题我脑洞了一个结论: 首先,我们定义满足以下条件的路径为“从右上到左下的路径”: 对于路径上任何不相同的两个点 $(x_1, y_1)$,$(x_2, y_2)$,都有: $x_1\neq x_2 ...
- BZOJ 3996 [TJOI 2015] 线性代数 解题报告
首先,我们可以得到: $$D = \sum_{i=1}^{n}\sum_{j=1}^{n}a_i\times a_j\times b_{i,j} - \sum_{i=1}^{n}a_i\times c ...
- 解题:TJOI 2015 弦论
题面 好像是个经典问题,然而我没做过 建SAM,然后经过每个节点的子串数目就可以求了,多个相同子串算一个的话就把所有siz都搞成$1$,否则就是$right$集合的大小,然后就是常见的递推 求第$k$ ...
- 解题:TJOI 2015 组合数学
题面 通过这个题理解了一下反链的概念,更新在图论知识点里了 每个点向右和下连边可以建出一张图,这个题事实上是让我们求图的最小链覆盖.Dilworth定理告诉我们,最小链覆盖等于最长反链(反链:DAG中 ...
- 后缀自动机(SAM)奶妈式教程
后缀自动机(SAM) 为了方便,我们做出如下约定: "后缀自动机" (Suffix Automaton) 在后文中简称为 SAM . 记 \(|S|\) 为字符串 \(S\) 的长 ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...
随机推荐
- Logstash:处理多个input
Logstash:处理多个input Logstash的整个pipleline分为三个部分: input插件:提取数据. 这可以来自日志文件,TCP或UDP侦听器,若干协议特定插件(如syslog或I ...
- 刨树根,抓住redis 进行七连问
追着 redis 进行七连问 Hello Redis 有几个问题想请教你 Hello,Redis! 我们相处已经很多年了,从模糊的认识到现在我们已经深入结合,你的好我一直都知道也一直都记住,能否在让我 ...
- Python - 列表 - 第八天
Python 列表 序列是Python中最基本的数据结构.序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推. Python有6个序列的内置类型,但最常见的 ...
- 剑指 Offer——13. 调整数组顺序使奇数位于偶数前面
题目描述 输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变.这和书本不太一样. 解 ...
- csp 201809-1卖菜
问题描述 在一条街上有n个卖菜的商店,按1至n的顺序排成一排,这些商店都卖一种蔬菜. 第一天,每个商店都自己定了一个价格.店主们希望自己的菜价和其他商店的一致,第二天,每一家商店都会根据他自己和相邻商 ...
- Git Error:There is no tracking information for the current branch.
在执行git pull的时候,提示当前branch没有跟踪信息: $> git pull There is no tracking information for the current bra ...
- ztree选父不选子选子不选父
var setting = { data: { simpleData: { enable: true } } ,check: { enable: true , chkStyle: 'checkbox' ...
- ANDROID培训准备资料之BroadcastReceiver
BroacastReceiver的启动方式? (1) 创建需要启动的BroadcastReceiver的Intent. (2) 调用context的sendBroadcast()或者s ...
- bootstrap基础样式学习(一)
1.按钮btn .btn 按钮基础的样式 .btn-default 白底黑子的按钮 .btn-danger/warning/success/info/primary .btn-lg/sm/xs 按钮大 ...
- VMware虚拟机可与Win10物理机互ping并可访问互联网的设置方法
一.系统环境: VMware 15.Windows 10 1903.Windows 7 虚拟机 二.具体步骤: 1.Win10物理机,控制面板-所有控制面板项-网络连接-物理网卡适配器右键-属性-共 ...