Luogu3214 HNOI2011 卡农 组合、DP
火题qwq
我们需要求的是满足元素个数为\(M\)、元素取值范围为\([1,2^n-1]\)、元素异或和为\(0\)的集合的数量。
首先我们可以计算元素有序的方案数(即计算满足这些条件的序列的数量),然后除以\(M!\)。
设\(dp_i\)表示大小为\(i\)的满足条件的序列个数
由"元素异或和为\(0\)"可以知道,如果确定了其中\(i-1\)个向量,第\(i\)个向量就可以知道了,选择\(i-1\)个向量的方案数是\(A_{2^n-1}^{i-1}\)
然后考虑非法情况:当前元素为\(0\)时,前\(i-1\)个向量异或和为\(0\),所以要减掉\(dp_{i-1}\);存在两个向量相同时,其他的向量的异或和就为\(0\),因为选择这个向量的方案数是\(i-1\),选择这两个向量的取值的方案数是\(2^n-1-(i-2)\),所以这里需要减掉\(dp_{i-2} \times (i-1) \times (2^n-1-(i-2))\)
那么DP方程就是\(dp_i = A_{2^n-1}^{i-1} - dp_{i-1} - dp_{i-2} \times (i-1) \times (2^n-1-(i-2))\)。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
#include<iomanip>
#include<cmath>
#include<cassert>
//This code is written by Itst
using namespace std;
const int MOD = 1e8 + 7;
int dp[1000003] , N , M;
int poww(long long a , int b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return times;
}
signed main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
cin >> N >> M;
int down = 1 , tms = 1 , tmp = 1 , jc = 1;
for(int i = 1 ; i <= N ; ++i)
down = (down << 1) % MOD;
--down; tms = tmp = down;
dp[0] = 1; dp[1] = 0;
for(int i = 2 ; i <= M ; ++i){
jc = 1ll * jc * i % MOD;
dp[i] = (2ll * MOD + tms - dp[i - 1] - 1ll * dp[i - 2] * (i - 1) % MOD * (tmp - i + 2) % MOD) % MOD;
tms = 1ll * tms * (--down) % MOD;
}
cout << 1ll * dp[M] * poww(jc , MOD - 2) % MOD;
return 0;
}
Luogu3214 HNOI2011 卡农 组合、DP的更多相关文章
- BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)
题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(S ...
- bzoj2339[HNOI2011]卡农 dp+容斥
2339: [HNOI2011]卡农 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 842 Solved: 510[Submit][Status][ ...
- P3214 [HNOI2011]卡农
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...
- 【BZOJ2339】[HNOI2011]卡农 组合数+容斥
[BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...
- [BZOJ2339][HNOI2011]卡农
[BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...
- BZOJ2339[HNOI2011]卡农——递推+组合数
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...
- [HNOI2011]卡农 (数论计数,DP)
题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...
- [HNOI2011]卡农 题解
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
随机推荐
- Codevs 1305 Freda的道路(矩阵乘法 DP优化)
1305 Freda的道路 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description Freda要到Rainbow的城堡去玩了.我们可以认 ...
- (11)Go方法/接收者
方法和接收者 Go语言中的方法(Method)是一种作用于特定类型变量的函数.这种特定类型变量叫做接收者(Receiver).接收者的概念就类似于其他语言中的this或者 self. 方法的定义格式如 ...
- go语言new和make
1.new func new(Type) *Type 内建函数,内建函数 new 用来分配内存,它的第一个参数是一个类型,它的返回值是一个指向新分配类型默认值的指针! 2.make func make ...
- php . extension_loaded
(PHP 4, PHP 5, PHP 7) extension_loaded — 检查一个扩展是否已经加载 如果 name 指定的扩展已加载,返回TRUE,否则返回 FALSE. Example #1 ...
- 辨析Java方法参数中的值传递和引用传递
小方法大门道 小瓜瓜作为一个Java初学者,今天跟我说她想通过一个Java方法,将外部变量通过参数传递到方法中去,进行逻辑处理,方法执行完毕之后,再对修改过的变量进行判断处理,代码如下所示. publ ...
- 微信小程序之确认框实现
效果图如下: 核心代码如下: delType:function(e){ var typeId = e.currentTarget.dataset['id']; console.log("de ...
- 从零开始搭建实验室Ubuntu服务器 | 深度学习工作站
一个标准的数据分析码农必须要配一台超薄笔记本和一台高性能服务器,笔记本是日常使用,各种小问题的解决,同时也是用于远程连接终端服务器:高性能服务器就是核心的处理数据的平台,CPU.内存.硬盘容量.GPU ...
- 对异步处理的http接口进行性能测试
以前对接口做性能测试,接口都是同步处理的,请求之后等待响应结果就知道处理结果了,这样只要看这个接口是否异常,如果无异常无报错记录这个接口的响应时间.TPS等性能指标进行分析就可以了,最近在工作中遇到了 ...
- Windows10环境下 Nginx+ffmpeg自搭服务器制作RTMP直播流
Windows10环境下 Nginx+ffmpeg自搭服务器制作RTMP直播流学习笔记 所需条件: nginx-rtmp-module(带rtmp模块) ,链接:https://link.jiansh ...
- rrr
# coding:utf-8 import pika username = 'feng' password = 'nihao' host = '192.168.1.144' credentials = ...