取2维特征,方便图形展示

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris data = load_iris()
y = data.target
X = data.data
pca = PCA(n_components=2)
reduced_X = pca.fit_transform(X) red_x, red_y = [], []
blue_x, blue_y = [], []
green_x, green_y = [], []
for i in range(len(reduced_X)):
if y[i] == 0:
red_x.append(reduced_X[i][0])
red_y.append(reduced_X[i][1])
elif y[i] == 1:
blue_x.append(reduced_X[i][0])
blue_y.append(reduced_X[i][1])
else:
green_x.append(reduced_X[i][0])
green_y.append(reduced_X[i][1])
plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(blue_x, blue_y, c='b', marker='D')
plt.scatter(green_x, green_y, c='g', marker='.')
plt.show()

使用协方差矩阵的特征向量PCA来处理数据降维的更多相关文章

  1. 【机器学习实战】第13章 利用 PCA 来简化数据

    第13章 利用 PCA 来简化数据 降维技术 场景 我们正通过电视观看体育比赛,在电视的显示器上有一个球. 显示器大概包含了100万像素点,而球则可能是由较少的像素点组成,例如说一千个像素点. 人们实 ...

  2. 数据降维(Dimensionality reduction)

    数据降维(Dimensionality reduction) 应用范围 无监督学习 图片压缩(需要的时候在还原回来) 数据压缩 数据可视化 数据压缩(Data Compression) 将高维的数据转 ...

  3. PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?

    PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) ...

  4. 机器学习基础与实践(三)----数据降维之PCA

    写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...

  5. 数据降维技术(1)—PCA的数据原理

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

  6. 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...

  7. 机器学习——利用PCA来简化数据

    降维技术的好处: 1.使得数据集更易使用 2.降低很多算法的计算开销 3.取出噪声 4.使得结果易懂 在已标注和未标注的数据上都有降维技术,降维的方法: 1.主成分分析(Principal Compo ...

  8. [机器学习]-PCA数据降维:从代码到原理的深入解析

    &*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Prin ...

  9. 利用主成分分析(PCA)简化数据

    一.PCA基础 线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,我们是将数据的主成分(包含信息量大的维度)保留下来,忽略掉对数据描述不重要的成分.即将主成分维度 ...

随机推荐

  1. Python入门篇-返回值和作用域

    Python入门篇-返回值和作用域 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.返回值 1>.返回值概述 Python函数使用return语句返回“返回值” 所有函数都 ...

  2. CVE-2019-5475:Nexus2 yum插件RCE漏洞复现

    0x00 前言 如果有想一起做漏洞复现的小伙伴,欢迎加入我们,公众号内点击联系作者即可 提示:由于某些原因,公众号内部分工具即将移除,如果有需要的请尽快保存 0x01 漏洞概述 最近hackerone ...

  3. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  4. 深度学习Keras框架笔记之AutoEncoder类

    深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction= ...

  5. 【python】requests 异常处理

    以下是request.exceptions下的各种异常错误: RequestException: HTTPError(RequestException) UnrewindableBodyError(R ...

  6. Yii集成PHPWord

    一.安装 1.下载composer curl -sS https://getcomposer.org/installer | php 将composer.phar文件移动到bin目录以便全局使用com ...

  7. rsync提权

    介绍:Rsync是linux下一款数据备份工具,默认开启873端口 利用条件:rsync未授权 列出模板 rsync rsync://目标ip:873/ 列出模块src下的文件 rsync rsync ...

  8. PostgreSQL 一些比较好用的字符串函数

    最近刚接触到PostgreSQL数据库,发现很多功能比较强大的内置函数,特此记录下来.示例下次再补. 1.concat 字符串连接函数 2.concat_ws concat_ws函数连接可自定义分隔符 ...

  9. 【洛谷P4585】 [FJOI2015]火星商店问题 线段树分治+可持久化trie

    感觉这个线段树分治和整体二分几乎相同啊~ code: #include <bits/stdc++.h> #define MAX 100300 #define ll long long #d ...

  10. WinDbg常用命令系列---||(系统状态)

    ||(系统状态) 简介 双竖线 ( || ) 命令将打印指定的系统或当前正在调试的所有系统的状态. 使用形式 || System 参数 System 指定要显示的系统. 如果省略此参数,将显示正在调试 ...