import pandas as pd
from datetime import datetime fn = r"D:\OneDrive - UNSW\tweets_flu.csv"
df = pd.read_csv(fn)
for i in range(len(df)):
t = df.iloc[i]['created_at']
w = datetime.strptime(t, "%Y-%m-%d %H:%M:%S").strftime("%W")
ws.append(w) ws = []
df['ws'] = ws
df['ws'].value_counts()

 

import pandas as pd
from datetime import datetime fn = r"D:\OneDrive - UNSW\tweets_flu.csv"
df = pd.read_csv(fn)
for i in range(len(df)):
t = df.iloc[i]['created_at']
w = datetime.strptime(t, "%Y-%m-%d %H:%M:%S").strftime("%W")
ws.append(w) ws = []
df['ws'] = ws
df['ws'].value_counts() wss = [] for i in a.index:
wss.append((i, a[i])) sorted(wss, key=lambda x:x[0])
[('12', 56), ('13', 22), ('14', 41), ('15', 52), ('16', 25), ('17', 45), ('18', 63), ('19', 54), ('20', 51), ('21', 143), ('22', 77), ('23', 53), ('24', 133), ('25', 93), ('26', 77), ('27', 125), ('28', 63), ('29', 67), ('30', 56), ('31', 67), ('32', 62), ('33', 67), ('34', 54), ('35', 41), ('36', 43), ('37', 24), ('38', 29), ('39', 33), ('40', 14)]

save data in csv file.

fn = r"D:\OneDrive - UNSW\01-UNSW\02-Papers\20190514-Prediction Location of Twitter\Data\Paper\weekly_tweets.csv"

fo = open(fn, "w+")
for e in a:
fo.write(e[0] + ", " + str(e[1]) + "\n")
>>> import re
>>> def word_extraction(sentence):
ignore = ['a', "the", "is"]
words = re.sub("[^\w]", " ", sentence).split()
cleaned_text = [w.lower() for w in words if w not in ignore]
return cleaned_text >>> a = "alex is. good guy."
>>> word_extraction(a)
['alex', 'good', 'guy']
>>> a = ["fluence", 'good']
>>> b = 'flu'
>>> b in a
False
>>> 'go' in a
False
>>> 'good' in a
True
>>> import nltk
>>> nltk.download('stopwords')
[nltk_data] Downloading package stopwords to
[nltk_data] C:\Users\z5194293\AppData\Roaming\nltk_data...
[nltk_data] Unzipping corpora\stopwords.zip.
True
>>> from nltk.corpus import stopwords
>>> stopwords.words('english')
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> fn = r"D:\Data\CSV\AUS_AVG_tweets_Centroid_Lon_lat.csv"
>>> import pandas as pd
>>> df = pd.read_csv(fn)
>>> df.head()
OBJECTID_1 OBJECTID ... d_y distance
0 1 1 ... 0.009560 1.149847
1 2 2 ... 0.204213 36.363808
2 3 3 ... -0.003238 0.394919
3 4 4 ... 0.000109 1.063002
4 5 5 ... -0.004560 0.549273 [5 rows x 14 columns]
>>> df.columns
Index(['OBJECTID_1', 'OBJECTID', 'SA2_NAME16', 'CENTROID_X', 'CENTROID_Y',
'State', 'Count_', 'Avg_co_lon', 'Avg_co_lat', 'Shape_Length',
'Shape_Area', 'd_x', 'd_y', 'distance'],
dtype='object')
>>> dff = df[['SA2_NAME16']]
>>> dff.head()
SA2_NAME16
0 Albany
1 Albany Region
2 Alexander Heights - Koondoola
3 Alkimos - Eglinton
4 Applecross - Ardross
>>> dff = df[['SA2_NAME16', 'CENTROID_X']]
>>> dff.head()
SA2_NAME16 CENTROID_X
0 Albany 117.899601
1 Albany Region 118.207172
2 Alexander Heights - Koondoola 115.865812
3 Alkimos - Eglinton 115.677976
4 Applecross - Ardross 115.836085
>>> dff = df[['SA2_NAME16', 'CENTROID_X', 'CENTROID_Y', 'State', 'Avg_co_lon', 'Avg_co_lat', 'Shape_Area']]
>>> dff.head()
SA2_NAME16 CENTROID_X ... Avg_co_lat Shape_Area
0 Albany 117.899601 ... -35.017921 0.003012
1 Albany Region 118.207172 ... -34.923186 0.394533
2 Alexander Heights - Koondoola 115.865812 ... -31.831628 0.000638
3 Alkimos - Eglinton 115.677976 ... -31.600350 0.003104
4 Applecross - Ardross 115.836085 ... -32.014606 0.000518 [5 rows x 7 columns]
>>> dff.columns
Index(['SA2_NAME16', 'CENTROID_X', 'CENTROID_Y', 'State', 'Avg_co_lon',
'Avg_co_lat', 'Shape_Area'],
dtype='object')
>>> dff.to_csv(r"D:\Data\CSV\AUS_AVG_tweets_Centroid_Lon_lat_lite.csv", index=False") SyntaxError: EOL while scanning string literal
>>> dff.to_csv(r"D:\Data\CSV\AUS_AVG_tweets_Centroid_Lon_lat_lite.csv", index=False) >>> dff = pd.read_csv(r"D:\Data\CSV\AUS_AVG_tweets_Centroid_Lon_lat_lite.csv") >>> dff.head() NAME CEN_X ... AVG_Y AREA
0 Albany 117.899601 ... -35.017921 0.003012
1 Albany Region 118.207172 ... -34.923186 0.394533
2 Alexander Heights - Koondoola 115.865812 ... -31.831628 0.000638
3 Alkimos - Eglinton 115.677976 ... -31.600350 0.003104
4 Applecross - Ardross 115.836085 ... -32.014606 0.000518 [5 rows x 7 columns]
>>> dff.columns Index(['NAME', 'CEN_X', 'CEN_Y', 'STATE', 'AVG_X', 'AVG_Y', 'AREA'], dtype='object')
>>>

 

【449】backup get weekly tweets的更多相关文章

  1. 【449】Win10 蓝牙耳机链接没有声音

    Exhausting,当电脑出现问题的时候!!! 问题描述:蓝牙耳机连接上了电脑,但是通过右下角声音按钮无法选择蓝牙耳机的选项??? 解决方案:在声音按钮处点击右键,选择最下面的菜单“troubles ...

  2. 【LeetCode】树(共94题)

    [94]Binary Tree Inorder Traversal [95]Unique Binary Search Trees II (2018年11月14日,算法群) 给了一个 n,返回结点是 1 ...

  3. 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)

    [BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...

  4. 【LeetCode】449. Serialize and Deserialize BST 解题报告(Python)

    [LeetCode]449. Serialize and Deserialize BST 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode.com/pro ...

  5. 【BBED】BBED模拟并修复ORA-08102错误

    [BBED]BBED模拟并修复ORA-08102错误 1.1  BLOG文档结构图 1.2  前言部分 1.2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其 ...

  6. python基础学习十 logging模块详细使用【转载】

    很多程序都有记录日志的需求,并且日志中包含的信息既有正常的程序访问日志,还可能有错误.警告等信息输出,python的logging模块提供了标准的日志接口,你可以通过它存储各种格式的日志,主要用于输出 ...

  7. 【TTS】传输表空间AIX asm -> linux asm

    [TTS]传输表空间AIX asm -> linux asm 一.1  BLOG文档结构图       一.2  前言部分   一.2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌 ...

  8. 【TTS】传输表空间Linux asm -> AIX asm

    [TTS]传输表空间Linux asm -> AIX asm 一.1  BLOG文档结构图       一.2  前言部分   一.2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌 ...

  9. Linux学习之路-Linux-at及cron命令【7】---20171215

    Linux学习之路-Linux-at及cron命令[7]---20171215 DannyExia000人评论986人阅读2017-12-24 17:28:03   ntpdate 命令 [root@ ...

随机推荐

  1. iptable千万不要yum remove iptables

    iptable千万不要运行yum remove iptables,进行卸载打开linux后发现没有firewalld和iptables,建议安装firewall 命令: yum install fir ...

  2. C# 验证控件组

    C# 验证控件允许使用ValidationGroup给验证控件分组,分组后的两组验证控件可以独立使用,互不相干.比如一个页面有登录和注册两个部分,假如使用验证控件组,提交的时候会对所有的验证控件进行验 ...

  3. class Pagination(object)分页源码

    class Pagination(object): def init(self, current_page, all_count, per_page_num=10, pager_count=11): ...

  4. python的多线程是否没有用了

    python的多线程是否就完全没有用了呢? 相同的代码,为何有时候多线程会比单线程慢,有时又会比单线程快? 这主要跟运行的代码有关: 1. CPU密集型代码 (各种循环处理.计数等等 ),在这种情况下 ...

  5. 【转】RabbitMQ三种Exchange模式

    [转]RabbitMQ三种Exchange模式 RabbitMQ中,所有生产者提交的消息都由Exchange来接受,然后Exchange按照特定的策略转发到Queue进行存储 RabbitMQ提供了四 ...

  6. Redis 高可用架构设计(转载)

    转载自:https://mp.weixin.qq.com/s?__biz=MzA3NDcyMTQyNQ==&mid=2649263292&idx=1&sn=b170390684 ...

  7. 树上最长不下降链 线段树合并+set

    读错题了,然后写了一个树上 LIS,应该是对的吧...... code: #include <bits/stdc++.h> #define N 200005 #define LL long ...

  8. Approximate Search

    题目链接:Gym-101492H 动态规划,应该是比较基础的,可是自己就是不会QAQ.... /* 把使用机会当成“花费” */ # include <iostream> # includ ...

  9. 廖雪峰Python笔记

    △命令行模式和Python交互模式 在Windows开始菜单选择“命令提示符”,就进入到命令行模式,它的提示符类似C:\>:在命令行模式下敲命令python,就看到类似如下的一堆文本输出,然后就 ...

  10. mysql 获取数学成绩最高以及最低的同学

    mysql> select * from test; +----+----------+-------+-----------+ | id | name | score | subject | ...