月球美容计划之最小生成树(MST)
寒假学的两个算法,普里姆,克鲁斯卡尔最终弄明确了。能够发总结了
先说说普里姆,它的本质就是贪心。先从随意一个点開始,找到最短边,然后不断更新更新len数组,然后再选取最短边并标记经过的点,直到全部的点被标记。或者说已经选好了n-1条边。
拿SDUTOJ2144为例。代码例如以下,可做模板
#include <stdio.h>
#include <string.h>
#define INF 1000000
//最小生成树
//普里姆
int G[200][200];
int len[200];
bool vis[200];
int prm (int n)
{
int i,k,ans = 0;
memset (vis,0,sizeof(vis));
for (i = 2;i <= n;i++)//初始化
len[i] = G[1][i];
vis[1] = 1;
for (i = 1;i < n;i++) //循环n - 1次
{ //由于n个顶点的MST一定是n-1条边
int imin = INF,xb;
for (k = 1;k <= n;k++)
if (!vis[k] && imin > len[k])
{
imin = len[k];
xb = k;
}
if (imin == INF) //没有找到最小值,说明图不连通
return -1;
vis[xb] = 1;
ans += imin;
for (k = 1;k <= n;k++)
if (!vis[k] && len[k] > G[xb][k])
len[k] = G[xb][k];
}
return ans;
}
int main()
{
int n,m;
while (~scanf ("%d%d",&n,&m))
{
int i,k;
for (i = 1;i <= n;i++)
for (k = 1;k <= n;k++)
if (i != k)
G[i][k] = INF;
else
G[i][k] = 0;
for (i = 0;i < m;i++)
{
int a,b,c;
scanf ("%d%d%d",&a,&b,&c);
if (G[a][b] > c) //假设有边多次录入。选权最小的那个
G[a][b] = G[b][a] = c;
}
int ans = prm(n);
printf ("%d\n",ans);
}
return 0;
}
克鲁斯卡尔,一个排序一个并查集仅仅是表面。实质还是贪心,仅仅只是普里斯是任选一个点选最短路,而克鲁斯卡尔是看全局,全体边排序,当然,由于排序,导致时间复杂度不easy降下来。
相同的题,代码例如以下:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define INF 1000000
//最小生成树
//克鲁斯卡尔
int vis[200];
struct eg
{
int v,u,w;
}e[100000];
int cmp (const void *a,const void *b)
{
struct eg *ta = (struct eg *)a;
struct eg *tb = (struct eg *)b;
return ta->w - tb->w;
}
int fin (int a)
{
int r = a;
while (vis[r] != r)
r = vis[r];
int k;
while (vis[a] != a)
{
k = vis[a];
vis[a] = r;
a = vis[k];
}
return r;
}
int add (int a,int b)
{
vis[fin(a)] = fin (b);
return 0;
}
int kls(int n,int m)
{
int i;
int ans = 0;
for (i = 0;i <=n;i++)
vis[i] = i;
for (i = 0;i < m;i++)
{
if (fin(e[i].u) != fin(e[i].v))
{
add (e[i].u,e[i].v);
ans += e[i].w;
}
}
return ans;
}
int main()
{
int n,m;
while (~scanf ("%d%d",&n,&m))
{
int i,k;
for (i = 0;i < m;i++)
{
int a,b,c;
scanf ("%d%d%d",&a,&b,&c);
e[i].u = a;
e[i].v = b;
e[i].w = c;
}
qsort(e,m,sizeof(e[0]),cmp);
int ans = kls(n,m);
printf ("%d\n",ans);
}
return 0;
}
月球美容计划之最小生成树(MST)的更多相关文章
- 最小生成树MST算法(Prim、Kruskal)
最小生成树MST(Minimum Spanning Tree) (1)概念 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边,所谓一个 ...
- POJ 1679 The Unique 次最小生成树 MST
http://poj.org/problem?id=1679 题目大意: 给你一些点,判断MST(最小生成树)是否唯一. 思路: 以前做过这题,不过写的是O(n^3)的,今天学了一招O(n^2)的,哈 ...
- 最小生成树(MST)[简述][模板]
Prim(添点法) 1. 任选一点(一般选1), 作为切入点,设其与最小生成树的距离为0(实际上就是选一个点,将此树实体化),. 2. 在所有未选择的点中选出与最小生成树距离最短的, 累计其距离, 并 ...
- 最小生成树MST
定义 在一给定的无向联通带权图\(G = (V, E, W)\)中,\((u, v)\) 代表连接顶点 \(u\) 与顶点 \(v\) 的边,而 \(w(u, v)\) 代表此边的权重,若存在 \(T ...
- 【算法与数据结构】图的最小生成树 MST - Prim 算法
Prim 算法属于贪心算法. #include <stdio.h> #define VERTEXNUM 7 #define INF 10000 typedef struct Graph { ...
- MST最小生成树及克鲁斯卡尔(Kruskal)算法
最小生成树MST,英文名如何拼写已忘,应该是min spaning tree吧.假设一个无向连通图有n个节点,那么它的生成树就是包括这n个节点的无环连通图,无环即形成树.最小生成树是对边上权重的考虑, ...
- 【转载】最小生成树之Kruskal算法
给定一个无向图,如果它任意两个顶点都联通并且是一棵树,那么我们就称之为生成树(Spanning Tree).如果是带权值的无向图,那么权值之和最小的生成树,我们就称之为最小生成树(MST, Minim ...
- Hdu 4081 最小生成树
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...
随机推荐
- Linux 安装 JDK
本篇博客用于记录一下在 Linux 系统下安装 Java 环境. 在大部分的 Linux 系统中都有安装 Open JDK,所以最好是先卸载 Open JDK 后在进行我们的 JDK 安装.Open ...
- 动态规划法(八)最大子数组问题(maximum subarray problem)
问题简介 本文将介绍计算机算法中的经典问题--最大子数组问题(maximum subarray problem).所谓的最大子数组问题,指的是:给定一个数组A,寻找A的和最大的非空连续子数组.比如 ...
- Python 实现的 12306抢票脚本
Python12306抢票脚本 本脚本使用一个类来实现所有代码,大体上分为以下几个模块及其步骤:- 初始化对象属性(在抢票前进行的属性初始化,包括初始化浏览器模拟对象,个人信息等).- 建立模拟浏览器 ...
- Spring的IOC/DI使用到的技术
一.了解Spring IOC/DI 1:Spring有两大核心技术,控制反转(Inversion of Control, IOC)/依赖注入(Dependency Injection,DI)和面向切面 ...
- js-QuickStart-base.js
// 1.变量(Variables) var myVariable; myVariable = 'Bob'; // 数据类型 string number boolean array object // ...
- blfs(systemd版本)学习笔记-wget的安装与配置
我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! blfs wget项目地址:http://www.linuxfromscratch.org/blfs/view/stable-s ...
- vue中使用axios(异步请求)和mock.js 模拟虚假数据
一.使用axios 1.安装 npm install --save axios 2.引用 import Axios from 'axios' Vue.prototype.Axios = Axios 二 ...
- java Name [jdbc/myjavadb] is not bound in this Context. Unable to find [jdbc].
一.出错时的情况: 首先,这是一个servlet项目 1.项目的web.xml配置了:(后来发现不配置这个也行,但是tomcat一定要配置) <resource-ref> <desc ...
- JS--我发现,原来你是这样的JS:面向对象编程OOP[1]--(理解对象和对象属性类型)
一.介绍 老铁们,这次是JS的面向对象的编程OOP(虽然我没有对象,心累啊,但是可以自己创建啊,哈哈). JS高程里第六章的内容,这章内容在我看来是JS中很难理解的一部分.所以分成三篇博客来逐个理清. ...
- python自动化开发-7
socket编程 Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口.在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对 ...