学习newton raphson and back eluer
% % time step https://ww2.mathworks.cn/matlabcentral/answers/184200-newton-raphson-loop-for-backward-euler
% h = (t_final - t_init)/n; % with n number of time steps
% % vectors
% t = [tinit zeros(,n)]; % time
% y = [yinit zeros(,n)]; % solution
% % Backward Euler loop
% for i = :n
% t(i+) = t(i) + h;
% y_temp = y(i) + h(f(t(i), y(i)));
% y(i+) = y(i) + h*f(t(i+), y_temp);
% end
% for i = :n
% error = ;
% tolerance = 1e-;
% t(i+) = t(i) + h;
% y_temp = y(i) + h*(f(t(i), y(i)));
% while error >= tolerance
% y(i+) = y(i) + h*f(t(i+), y_temp);
% error = abs(y(i+) - y_temp) % (local) absolute error
% y_temp = y(i+);
% end
% end % yold = y(i)+h*f(t(i),y(i));
% while error >= tolerance
% ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
% error = abs(ynew-yold);
% yold=ynew;
% end
% y(i+) = ynew; %y'=y+2*x/y^2 x=[0,2] y(0)=1 https://wenku.baidu.com/view/d18cdaa10b4c2e3f5627632f.html
t_final=;
t_init=;
n=;
tolerance=0.0000001
h = (t_final - t_init)/n;
ti=t_init+h;
yold=+h*f(,);% yold = y(i)+h*f(t(i),y(i));
while error >= tolerance
ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
error = abs(ynew-yold);
yold=ynew;
end
y(i+) = ynew;
上面代码应该怎样修改?
学习newton raphson and back eluer的更多相关文章
- Jacobian矩阵、Hessian矩阵和Newton's method
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...
- Newton's method Drawback and advantage
Newton Raphson Method: Advantages and Drawbacks: v=QwyjgmqbR9s" target="_blank"& ...
- Boosting(提升方法)之GBDT
一.GBDT的通俗理解 提升方法采用的是加法模型和前向分步算法来解决分类和回归问题,而以决策树作为基函数的提升方法称为提升树(boosting tree).GBDT(Gradient Boosting ...
- C++函数式编程实现牛顿法
In numerical analysis, Newton's method (also known as the Newton–Raphson method), named after Isaac ...
- Generalized normal distribution and Skew normal distribution
Density Function The Generalized Gaussian density has the following form: where (rho) is the " ...
- Tree - XGBoost with parameter description
In the previous post, we talk about a very popular Boosting algorithm - Gradient Boosting Decision T ...
- Tree - Gradient Boosting Machine with sklearn source code
This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boos ...
- OpenCASCADE解非线性方程组
OpenCASCADE解非线性方程组 eryar@163.com Abstract. 在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题.非线性网络问题.几何上的曲线曲 ...
- Apply Newton Method to Find Extrema in OPEN CASCADE
Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...
随机推荐
- Java备份文件
文件名后面补时间: public static void initFile(String sPath) { SimpleDateFormat df = new SimpleDateFormat(&qu ...
- python中建模分析零息票收益率曲线--复利和连续复利
收益率曲线(Yield Curve)是显示一组货币和信贷风险均相同,但期限不同的债券或其他金融工具收益率的图表.纵轴代表收益率,横轴则是距离到期的时间.在此用python建模分析零息票收益率曲线,输出 ...
- Ubutu16.04+Cuda9.2/9.0+Cudnn7.12/7.05+TensorFlow-gpu-1.8/1.6
目录 Ubuntu16.04 Installl 1. 安装环节 2. 安装卡死 3. NVIDIA显卡安装 2. CUDA Install 3.Cudnn7.05 Install 4.Tensorfl ...
- TensorFlow NormLization
local_response_normalization local_response_normalization出现在论文”ImageNet Classification with deep Con ...
- win7、centos7 双系统安装总结
centos7安装过程 问题:TroubleShooting选项进入图形化界面安装才成功. win7恢复引导区 问题:安装完Centos后,win7的引导区不见了 具体恢复过程:http://www. ...
- 直接从硬盘安装centos7网址整理
1.https://blog.csdn.net/happy_joker/article/details/52822025 注意:(1)第3步-->Linux引导安装-->软件选择--> ...
- matlab中变量问题——readonly 索引超出矩阵维度 workspacefunc 215
matlab程序运行过程中会出现如上提示,在网上检索未果,键入dbstop if error语句也无法定错误之处,就想这个错误不是一般的错误. 通过间隔打断点的方式最后定位错误为一句exist = f ...
- 配置远程主机http服务器 打包资源
<1> 搭建nginx 验证nginx是否启动成功 https://blog.csdn.net/wdsdsdsds/article/details/51179780 https://ww ...
- phpcms的一些问题 乱码,安装
一.乱码:我这的网站出现的乱码情况:后台栏目名乱码,迁站后更新缓存,再更新栏目,内容,前台都乱码. 找了半天原因,经过本地测试,没问题,一上线就出现问题,不同点就是线上的数据库版本是mysql5.5, ...
- C++重写(覆盖)、重载、重定义、
总结: 重写(覆盖)override 是指派生类函数重写(覆盖)基类函数 不同的范围,分别位于基类和派生类中 函数的名字相同 参数相同 基类函数必须有virtual关键字 重载overload 成员函 ...