学习newton raphson and back eluer
% % time step https://ww2.mathworks.cn/matlabcentral/answers/184200-newton-raphson-loop-for-backward-euler
% h = (t_final - t_init)/n; % with n number of time steps
% % vectors
% t = [tinit zeros(,n)]; % time
% y = [yinit zeros(,n)]; % solution
% % Backward Euler loop
% for i = :n
% t(i+) = t(i) + h;
% y_temp = y(i) + h(f(t(i), y(i)));
% y(i+) = y(i) + h*f(t(i+), y_temp);
% end
% for i = :n
% error = ;
% tolerance = 1e-;
% t(i+) = t(i) + h;
% y_temp = y(i) + h*(f(t(i), y(i)));
% while error >= tolerance
% y(i+) = y(i) + h*f(t(i+), y_temp);
% error = abs(y(i+) - y_temp) % (local) absolute error
% y_temp = y(i+);
% end
% end % yold = y(i)+h*f(t(i),y(i));
% while error >= tolerance
% ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
% error = abs(ynew-yold);
% yold=ynew;
% end
% y(i+) = ynew; %y'=y+2*x/y^2 x=[0,2] y(0)=1 https://wenku.baidu.com/view/d18cdaa10b4c2e3f5627632f.html
t_final=;
t_init=;
n=;
tolerance=0.0000001
h = (t_final - t_init)/n;
ti=t_init+h;
yold=+h*f(,);% yold = y(i)+h*f(t(i),y(i));
while error >= tolerance
ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
error = abs(ynew-yold);
yold=ynew;
end
y(i+) = ynew;
上面代码应该怎样修改?
学习newton raphson and back eluer的更多相关文章
- Jacobian矩阵、Hessian矩阵和Newton's method
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...
- Newton's method Drawback and advantage
Newton Raphson Method: Advantages and Drawbacks: v=QwyjgmqbR9s" target="_blank"& ...
- Boosting(提升方法)之GBDT
一.GBDT的通俗理解 提升方法采用的是加法模型和前向分步算法来解决分类和回归问题,而以决策树作为基函数的提升方法称为提升树(boosting tree).GBDT(Gradient Boosting ...
- C++函数式编程实现牛顿法
In numerical analysis, Newton's method (also known as the Newton–Raphson method), named after Isaac ...
- Generalized normal distribution and Skew normal distribution
Density Function The Generalized Gaussian density has the following form: where (rho) is the " ...
- Tree - XGBoost with parameter description
In the previous post, we talk about a very popular Boosting algorithm - Gradient Boosting Decision T ...
- Tree - Gradient Boosting Machine with sklearn source code
This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boos ...
- OpenCASCADE解非线性方程组
OpenCASCADE解非线性方程组 eryar@163.com Abstract. 在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题.非线性网络问题.几何上的曲线曲 ...
- Apply Newton Method to Find Extrema in OPEN CASCADE
Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...
随机推荐
- Pillow《转载》
Pillow https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/001432002 ...
- 【Linux】【Jenkins】代码编译和执行过程中的问题汇总
1.问题1:java.io.FileNotFoundException: /root/.jenkins/workspace/Videoyi_AutoTest_Maven/config-log4j\lo ...
- 使用fdisk进行分区
fdisk进行分区 1.首先使用fdisk -l 发现待分区磁盘/dev/vdb 大小为1TB 2.fdisk /dev/vdb 对该磁盘进行分区,输入m并回车 3.输入n并回车,n是“new”新建 ...
- 一份快速完整的Tensorflow模型保存和恢复教程(译)(转载)
该文章转自https://blog.csdn.net/sinat_34474705/article/details/78995196 我在进行图像识别使用ckpt文件预测的时候,这个文章给我提供了极大 ...
- Mybatis-spring 传统dao开发
jdbc.properties jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/mybatis?chara ...
- django不定义model,直接执行自定义SQL
如果不想定义model,直接执行自定义SQL,可如下操作: 1. 通过 connections获取db连接,如果是多个数据库,connections['dbName'] 来选择 2. 获取游标 cur ...
- delphi WebBrowser IPv6
We discovered one or more bugs in your app when reviewed on iPhone running iOS 11.4 on Wi-Fi connect ...
- sql查询语句for xml path语法
[原地址] for xml path作用:将多行的查询结果,根据某一些条件合并到一行. 例:现有一张表 执行下面语句 select Department, (SELECT Employee+',' F ...
- Activity中满屏和去标题的实现方法
两种方式: 在xml文件中进行配置 在项目的清单文件AndroidManifest.xml中,找到需要全屏或设置成无标题栏的Activity,在该Activity进行如下配置即可. 实现全屏效果: a ...
- python杂记一
1. 输出CSV文件 用python输出csv文件不难,可是MS office excel和WPS 对输出的CSV文件打开规则不一样. WPS可以支持CSV以'\t'为分隔符,打开文件直接写内容 MS ...