% % time step  https://ww2.mathworks.cn/matlabcentral/answers/184200-newton-raphson-loop-for-backward-euler
% h = (t_final - t_init)/n; % with n number of time steps
% % vectors
% t = [tinit zeros(,n)]; % time
% y = [yinit zeros(,n)]; % solution
% % Backward Euler loop
% for i = :n
% t(i+) = t(i) + h;
% y_temp = y(i) + h(f(t(i), y(i)));
% y(i+) = y(i) + h*f(t(i+), y_temp);
% end
% for i = :n
% error = ;
% tolerance = 1e-;
% t(i+) = t(i) + h;
% y_temp = y(i) + h*(f(t(i), y(i)));
% while error >= tolerance
% y(i+) = y(i) + h*f(t(i+), y_temp);
% error = abs(y(i+) - y_temp) % (local) absolute error
% y_temp = y(i+);
% end
% end % yold = y(i)+h*f(t(i),y(i));
% while error >= tolerance
% ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
% error = abs(ynew-yold);
% yold=ynew;
% end
% y(i+) = ynew; %y'=y+2*x/y^2 x=[0,2] y(0)=1 https://wenku.baidu.com/view/d18cdaa10b4c2e3f5627632f.html
t_final=;
t_init=;
n=;
tolerance=0.0000001
h = (t_final - t_init)/n;
ti=t_init+h;
yold=+h*f(,);% yold = y(i)+h*f(t(i),y(i));
while error >= tolerance
ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
error = abs(ynew-yold);
yold=ynew;
end
y(i+) = ynew;

上面代码应该怎样修改?

学习newton raphson and back eluer的更多相关文章

  1. Jacobian矩阵、Hessian矩阵和Newton's method

    在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...

  2. Newton's method Drawback and advantage

     Newton Raphson Method: Advantages and Drawbacks:   v=QwyjgmqbR9s" target="_blank"& ...

  3. Boosting(提升方法)之GBDT

    一.GBDT的通俗理解 提升方法采用的是加法模型和前向分步算法来解决分类和回归问题,而以决策树作为基函数的提升方法称为提升树(boosting tree).GBDT(Gradient Boosting ...

  4. C++函数式编程实现牛顿法

    In numerical analysis, Newton's method (also known as the Newton–Raphson method), named after Isaac ...

  5. Generalized normal distribution and Skew normal distribution

    Density Function The Generalized Gaussian density has the following form: where  (rho) is the " ...

  6. Tree - XGBoost with parameter description

    In the previous post, we talk about a very popular Boosting algorithm - Gradient Boosting Decision T ...

  7. Tree - Gradient Boosting Machine with sklearn source code

    This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boos ...

  8. OpenCASCADE解非线性方程组

    OpenCASCADE解非线性方程组 eryar@163.com Abstract. 在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题.非线性网络问题.几何上的曲线曲 ...

  9. Apply Newton Method to Find Extrema in OPEN CASCADE

    Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...

随机推荐

  1. Pillow《转载》

    Pillow https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/001432002 ...

  2. 【Linux】【Jenkins】代码编译和执行过程中的问题汇总

    1.问题1:java.io.FileNotFoundException: /root/.jenkins/workspace/Videoyi_AutoTest_Maven/config-log4j\lo ...

  3. 使用fdisk进行分区

    fdisk进行分区 1.首先使用fdisk -l 发现待分区磁盘/dev/vdb  大小为1TB 2.fdisk /dev/vdb 对该磁盘进行分区,输入m并回车 3.输入n并回车,n是“new”新建 ...

  4. 一份快速完整的Tensorflow模型保存和恢复教程(译)(转载)

    该文章转自https://blog.csdn.net/sinat_34474705/article/details/78995196 我在进行图像识别使用ckpt文件预测的时候,这个文章给我提供了极大 ...

  5. Mybatis-spring 传统dao开发

    jdbc.properties jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/mybatis?chara ...

  6. django不定义model,直接执行自定义SQL

    如果不想定义model,直接执行自定义SQL,可如下操作: 1. 通过 connections获取db连接,如果是多个数据库,connections['dbName'] 来选择 2. 获取游标 cur ...

  7. delphi WebBrowser IPv6

    We discovered one or more bugs in your app when reviewed on iPhone running iOS 11.4 on Wi-Fi connect ...

  8. sql查询语句for xml path语法

    [原地址] for xml path作用:将多行的查询结果,根据某一些条件合并到一行. 例:现有一张表 执行下面语句 select Department, (SELECT Employee+',' F ...

  9. Activity中满屏和去标题的实现方法

    两种方式: 在xml文件中进行配置 在项目的清单文件AndroidManifest.xml中,找到需要全屏或设置成无标题栏的Activity,在该Activity进行如下配置即可. 实现全屏效果: a ...

  10. python杂记一

    1. 输出CSV文件 用python输出csv文件不难,可是MS office excel和WPS 对输出的CSV文件打开规则不一样. WPS可以支持CSV以'\t'为分隔符,打开文件直接写内容 MS ...