学习newton raphson and back eluer
% % time step https://ww2.mathworks.cn/matlabcentral/answers/184200-newton-raphson-loop-for-backward-euler
% h = (t_final - t_init)/n; % with n number of time steps
% % vectors
% t = [tinit zeros(,n)]; % time
% y = [yinit zeros(,n)]; % solution
% % Backward Euler loop
% for i = :n
% t(i+) = t(i) + h;
% y_temp = y(i) + h(f(t(i), y(i)));
% y(i+) = y(i) + h*f(t(i+), y_temp);
% end
% for i = :n
% error = ;
% tolerance = 1e-;
% t(i+) = t(i) + h;
% y_temp = y(i) + h*(f(t(i), y(i)));
% while error >= tolerance
% y(i+) = y(i) + h*f(t(i+), y_temp);
% error = abs(y(i+) - y_temp) % (local) absolute error
% y_temp = y(i+);
% end
% end % yold = y(i)+h*f(t(i),y(i));
% while error >= tolerance
% ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
% error = abs(ynew-yold);
% yold=ynew;
% end
% y(i+) = ynew; %y'=y+2*x/y^2 x=[0,2] y(0)=1 https://wenku.baidu.com/view/d18cdaa10b4c2e3f5627632f.html
t_final=;
t_init=;
n=;
tolerance=0.0000001
h = (t_final - t_init)/n;
ti=t_init+h;
yold=+h*f(,);% yold = y(i)+h*f(t(i),y(i));
while error >= tolerance
ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
error = abs(ynew-yold);
yold=ynew;
end
y(i+) = ynew;
上面代码应该怎样修改?
学习newton raphson and back eluer的更多相关文章
- Jacobian矩阵、Hessian矩阵和Newton's method
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...
- Newton's method Drawback and advantage
Newton Raphson Method: Advantages and Drawbacks: v=QwyjgmqbR9s" target="_blank"& ...
- Boosting(提升方法)之GBDT
一.GBDT的通俗理解 提升方法采用的是加法模型和前向分步算法来解决分类和回归问题,而以决策树作为基函数的提升方法称为提升树(boosting tree).GBDT(Gradient Boosting ...
- C++函数式编程实现牛顿法
In numerical analysis, Newton's method (also known as the Newton–Raphson method), named after Isaac ...
- Generalized normal distribution and Skew normal distribution
Density Function The Generalized Gaussian density has the following form: where (rho) is the " ...
- Tree - XGBoost with parameter description
In the previous post, we talk about a very popular Boosting algorithm - Gradient Boosting Decision T ...
- Tree - Gradient Boosting Machine with sklearn source code
This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boos ...
- OpenCASCADE解非线性方程组
OpenCASCADE解非线性方程组 eryar@163.com Abstract. 在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题.非线性网络问题.几何上的曲线曲 ...
- Apply Newton Method to Find Extrema in OPEN CASCADE
Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...
随机推荐
- Jobs深入学习
代码回顾 Quartz 需要了解你可能希望该作业的实例拥有的各种属性,这是通过JobDetail 类完成的. JobDetail 实例是使用 JobBuilder 类构建的. JobDetail j ...
- 移动端使用mint-ui loadmore实现下拉刷新上拉显示更多
前序:在使用vue做一个h5项目的时候,需要上拉分页加载,实践中总结一下: 首先要安装mint-ui npm i mint-ui -S 然后引入,一般在main.js里面 import Vue fro ...
- 【Linux命令】Linux下的tar压缩解压缩命令详解(转)
tar -c: 建立压缩档案 -x:解压 -t:查看内容 -r:向压缩归档文件末尾追加文件 -u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用其中一个 ...
- Titanic缺失数值处理 & 存活率预测
1. kaggle泰坦尼克数据titanic完整下载,原作者良心分享 https://download.csdn.net/download/lansui7312/9936840 2. 缺失值处理 # ...
- Innodb锁相关总结
一.InnoDB共有七种类型的锁: (1)共享/排它锁(Shared and Exclusive Locks) (2)意向锁(Intention Locks) (3)插入意向锁(Insert Inte ...
- 2018SDIBT_国庆个人第七场
A - Complete the Word(暴力) Description ZS the Coder loves to read the dictionary. He thinks that a wo ...
- 【原】 The Linux Command Line - Permissions
id - display user identity chmod - umask -
- 4、订单详情 /items/order/detail?orderNo=201903251750380001
<template> <div class="write"> <div class="adr"> <div class ...
- elasticsearch5安装
环境: centos7 es 5.4.3 es安装 一.下载 wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsear ...
- 初学c# -- 学习笔记 小结
学了到了好些东西, 做了一些练习. 一.C# winform Socket 1.程序主要部分只是用了 Panel.Picturebox.Label.RicheditBox四个组件,滚动条.编辑框什么的 ...