【原创 Hadoop&Spark 动手实践 5】Spark 基础入门,集群搭建以及Spark Shell
Spark 基础入门,集群搭建以及Spark Shell
主要借助Spark基础的PPT,再加上实际的动手操作来加强概念的理解和实践。








































Spark 安装部署




















理论已经了解的差不多了,接下来是实际动手实验:
练习1 利用Spark Shell(本机模式) 完成WordCount
spark-shell 进行Spark-shell本机模式

第一步:通过文件方式导入数据
scala> val rdd1 = sc.textFile("file:///tmp/wordcount.txt")
rdd1: org.apache.spark.rdd.RDD[String] = file:///tmp/wordcount.txt MapPartitionsRDD[3] at textFile at <console>:24
scala> rdd1.count
res1: Long = 3

第二步:利用flatmap(_.split(" ")) 进行分词操作
scala> val rdd2 = rdd1.flatMap(_.split(" "))
rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[4] at flatMap at <console>:26
scala> rdd2.count
res2: Long = 8
scala> rdd2.take
take takeAsync takeOrdered takeSample
scala> rdd2.take(8)
res3: Array[String] = Array(hello, world, spark, world, hello, spark, hadoop, great)

第三步:利用map 转化为KV的形式
scala> val kvrdd1 = rdd2.map(x => (x,1))
kvrdd1: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[5] at map at <console>:28
scala> kvrdd1.count
res4: Long = 8
scala> kvrdd1.take(8)
res5: Array[(String, Int)] = Array((hello,1), (world,1), (spark,1), (world,1), (hello,1), (spark,1), (hadoop,1), (great,1))

第四步:把KV的map进行ReduceByKey操作
scala> val resultRdd1 = kvrdd1.reduceByKey(_+_)
resultRdd1: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[6] at reduceByKey at <console>:30
scala> resultRdd1.count
res6: Long = 5
scala> resultRdd1.take(5)
res7: Array[(String, Int)] = Array((hello,2), (world,2), (spark,2), (hadoop,1), (great,1))

第五步:将结果保持到文件之中
scala> resultRdd1.saveAsTextFile("file:///tmp/output1")

练习2 利用Spark Shell(Yarn Client模式) 完成WordCount
spark-shell --master yarn-client 启动Spark-shell Yarn Client模式

第一步:通过文件方式导入数据
scala> val rdd1 = sc.textFile("hdfs:///input/wordcount.txt")
rdd1: org.apache.spark.rdd.RDD[String] = hdfs:///input/wordcount.txt MapPartitionsRDD[1] at textFile at <console>:24
scala> rdd1.count
res0: Long = 260
scala> rdd1.take(100)
res1: Array[String] = Array(HDFS Users Guide, "", HDFS Users Guide, Purpose, Overview, Prerequisites, Web Interface, Shell Commands, DFSAdmin Command, Secondary NameNode, Checkpoint Node, Backup Node, Import Checkpoint, Balancer, Rack Awareness, Safemode, fsck, fetchdt, Recovery Mode, Upgrade and Rollback, DataNode Hot Swap Drive, File Permissions and Security, Scalability, Related Documentation, Purpose, "", This document is a starting point for users working with Hadoop Distributed File System (HDFS) either as a part of a Hadoop cluster or as a stand-alone general purpose distributed file system. While HDFS is designed to “just work” in many environments, a working knowledge of HDFS helps greatly with configuration improvements and diagnostics on a specific cluster., "", Overview, "",...

第二步:利用flatmap(_.split(" ")) 进行分词操作
scala> val rdd2 = rdd1.flatMap(_.split(" "))
rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at flatMap at <console>:26
scala> rdd2.count
res2: Long = 3687
scala> rdd2.take(100)
res3: Array[String] = Array(HDFS, Users, Guide, "", HDFS, Users, Guide, Purpose, Overview, Prerequisites, Web, Interface, Shell, Commands, DFSAdmin, Command, Secondary, NameNode, Checkpoint, Node, Backup, Node, Import, Checkpoint, Balancer, Rack, Awareness, Safemode, fsck, fetchdt, Recovery, Mode, Upgrade, and, Rollback, DataNode, Hot, Swap, Drive, File, Permissions, and, Security, Scalability, Related, Documentation, Purpose, "", This, document, is, a, starting, point, for, users, working, with, Hadoop, Distributed, File, System, (HDFS), either, as, a, part, of, a, Hadoop, cluster, or, as, a, stand-alone, general, purpose, distributed, file, system., While, HDFS, is, designed, to, “just, work”, in, many, environments,, a, working, knowledge, of, HDFS, helps, greatly, with, configuratio...

第三步:利用map 转化为KV的形式
scala> val kvrdd1 = rdd2.map(x => (x,1))
kvrdd1: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[3] at map at <console>:28
scala> kvrdd1.count
res4: Long = 3687
scala> kvrdd1.take(100)
res5: Array[(String, Int)] = Array((HDFS,1), (Users,1), (Guide,1), ("",1), (HDFS,1), (Users,1), (Guide,1), (Purpose,1), (Overview,1), (Prerequisites,1), (Web,1), (Interface,1), (Shell,1), (Commands,1), (DFSAdmin,1), (Command,1), (Secondary,1), (NameNode,1), (Checkpoint,1), (Node,1), (Backup,1), (Node,1), (Import,1), (Checkpoint,1), (Balancer,1), (Rack,1), (Awareness,1), (Safemode,1), (fsck,1), (fetchdt,1), (Recovery,1), (Mode,1), (Upgrade,1), (and,1), (Rollback,1), (DataNode,1), (Hot,1), (Swap,1), (Drive,1), (File,1), (Permissions,1), (and,1), (Security,1), (Scalability,1), (Related,1), (Documentation,1), (Purpose,1), ("",1), (This,1), (document,1), (is,1), (a,1), (starting,1), (point,1), (for,1), (users,1), (working,1), (with,1), (Hadoop,1), (Distributed,1), (File,1), (System,1), ((HDF...

第四步:把KV的map进行ReduceByKey操作
scala> var resultRdd1 = kvrdd1.reduce
reduce reduceByKey reduceByKeyLocally
scala> var resultRdd1 = kvrdd1.reduceByKey
reduceByKey reduceByKeyLocally
scala> var resultRdd1 = kvrdd1.reduceByKey(_+_)
resultRdd1: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at <console>:30
scala> resultRdd1.count
res6: Long = 1084
scala> resultRdd1.take(100)
res7: Array[(String, Int)] = Array((Because,1), (-reconfig,2), (guide,4), (under-replicated,1), (blocks,5), (maintained,1), (responsibility,1), (filled,1), (order,5), ([key-value,1), (prematurely,1), (cluster:,1), (type,1), (behind,1), (However,,1), (competing,1), (been,2), (begins,1), (up-to-date,3), (Permissions,3), (browse,1), (List:,1), (improved,1), (Balancer,2), (fine.,1), (over,1), (dfs.hosts,,2), (any,7), (connect,1), (select,2), (version,7), (disks.,1), (file,33), (documentation,,1), (file.,7), (performs,2), (million,2), (RAM,1), (are,27), ((data,1), (supported.,1), (consists,1), (existed,1), (brief,2), (overwrites,1), (safely,1), (Guide:,1), (Safemode,6), (Only,1), (Currently,1), (first-time,1), (dfs.namenode.name.dir,1), (thus,2), (salient,1), (query,1), (page).,1), (status,5...

第五步:将结果保持到HDFS文件之中
scala> resultRdd1.saveAsTextFile("hdfs:///output/wordcount1")

localhost:tmp jonsonli$ hadoop fs -ls /output/wordcount1
17/05/13 17:49:28 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 3 items
-rw-r--r-- 1 jonsonli supergroup 0 2017-05-13 17:47 /output/wordcount1/_SUCCESS
-rw-r--r-- 1 jonsonli supergroup 6562 2017-05-13 17:47 /output/wordcount1/part-00000
-rw-r--r-- 1 jonsonli supergroup 6946 2017-05-13 17:47 /output/wordcount1/part-00001






【原创 Hadoop&Spark 动手实践 5】Spark 基础入门,集群搭建以及Spark Shell的更多相关文章
- Spark集群搭建【Spark+Hadoop+Scala+Zookeeper】
1.安装Linux 需要:3台CentOS7虚拟机 IP:192.168.245.130,192.168.245.131,192.168.245.132(类似,尽量保持连续,方便记忆) 注意: 3台虚 ...
- Standalone集群搭建和Spark应用监控
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6815920501530034696/ 承接上一篇文档<Spark词频前十的统计练习> Spark on ...
- hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境
[手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...
- hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境 Hadoop Volume 配置
[手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...
- Hadoop框架:单服务下伪分布式集群搭建
本文源码:GitHub·点这里 || GitEE·点这里 一.基础环境 1.环境版本 环境:centos7 hadoop版本:2.7.2 jdk版本:1.8 2.Hadoop目录结构 bin目录:存放 ...
- ELK 之一:ElasticSearch 基础和集群搭建
一:需求及基础: 场景: 1.开发人员不能登录线上服务器查看详细日志 2.各个系统都有日志,日志数据分散难以查找 3.日志数据量大,查询速度慢,或者数据不够实时 4.一个调用会涉及到多个系统,难以在这 ...
- 集群搭建之Spark配置要点解析
注意点: 安装Spark前先要配置好Scala运行环境. Spark和Scala需要在各个机器上配置. 环境变量配置 在~/.bashrc中添加如下的配置信息. #scala conf export ...
- spark学习(1)--ubuntu14.04集群搭建、配置(jdk)
环境:ubuntu14.04 jdk-8u161-linux-x64.tar.gz 1.文本模式桌面模式切换 ctrl+alt+F6 切换到文本模式 ctrl + alt +F7 /输入命令start ...
- 【实践】Matlab2016a的mdce集群搭建
Matlab R2016a的mdce集群搭建 1.解压文件Matlab_R2016b_win64.iso. 文件下载地址:链接:https://pan.baidu.com/s/1mjJOaHa 密码: ...
随机推荐
- MySQL5.7.23 VS MySQL5.6.21 分区表性能对比测试
为评估MySQL从5.6.21升级到5.7.23版本的性能,针对分区表的读写做了对比测试. [测试环境] 1. 两台HP380的物理机,配置一致,CPU:Intel(R) Xeon(R) CPU E5 ...
- Redis自学笔记:3.6入门-有序集合类型
3.6有序集合类型 3.6.1介绍 在集合类型基础上,为集合中每个元素都关联了一个分数,故可以获得 分数最高(最低)的前N个元素,可以获得指定范围内的元素等 有序集合中每个元素不同,但它们的分数却可以 ...
- emoji
嗯...闲的... emoji:(博客园的markdown支持emoji编码...惊了) http://getemoji.com/ http://www.fhdq.net/emoji/emojifuh ...
- 2017-9-11-Linux开机启动脚本
参考文章:https://www.magentonotes.com/ubuntu-config-autostart-shell-script.html 还是先开门见山的说,Linux需要添加开机启动程 ...
- php 生成xml文件
<?php class Xml{ /* * $aData 要格式化的数组 * $path xml信息要写入的文件路径 * $ve ...
- 潭州课堂25班:Ph201805201 django框架 第九课 模型补充 博客小案例 (课堂笔记)
聚合查询: 分组查询: annotate() 方法 例:查询某学院学生人数,(一对多查询) 以字典的形式输出 annotate(统计 ‘关联学生字段 出现的次,).字典形式(键,值) 例:查询每项课程 ...
- [转]OpenVPN官网的HOWTO
因为墙的原因,打不开.特此转一下: HOWTO Introduction OpenVPN is a full-featured SSL VPN which implements OSI layer 2 ...
- BZOJ3644 : 陶陶的旅行计划
假设是序列问题,且$S<T$,可以贪心求解,通过维护下述信息进行区间合并. 对于区间$[l,r]$,维护的信息有: $v$:跳到了$\geq r$的位置后,可以花费$1$往右最多扩展多少. $f ...
- 删除office拥有多个都需要激活的授权信息
首先确认office目录下存在“ospp.vbs”文件,可以搜索确认文件路径. 我的是在C:\Program Files\Microsoft Office\Office16 然后以管理员身份打开cm ...
- pytorch写一个LeNet网络
我们先介绍下pytorch中的cnn网络 学过深度卷积网络的应该都非常熟悉这张demo图(LeNet): 先不管怎么训练,我们必须先构建出一个CNN网络,很快我们写了一段关于这个LeNet的代码,并进 ...