在敌人占领之前由城市和公路构成的图是连通图。在敌人占领某个城市之后所有通往这个城市的公路就会被破坏,接下来可能需要修复一些其他被毁坏的公路使得剩下的城市能够互通。修复的代价越大,意味着这个城市越重要。如果剩下的城市无法互通,则说明代价无限大,这个城市至关重要。最后输出的是代价最大的城市序号有序列表。借助并查集和Kruskal算法(最小生成树算法)来解决这个问题。

 //#include "stdafx.h"
#include <iostream>
#include <algorithm>
#include <vector> using namespace std; struct edge { // edge struct
int u, v, cost;
};
vector<edge> edges; // the number of edges is greater than 500 far and away int cmp(edge a, edge b) { // sort rule
return a.cost < b.cost;
} int parent[]; // union-find set void initParent(int n) { // initialize union-find set
int i;
for(i = ; i <= n; i++) {
parent[i] = -; // a minus means it is a root node and its absolute value represents the number of the set
}
} int findRoot(int x) { // find the root of the set
int s = x;
while(parent[s] > ) {
s = parent[s];
} int temp;
while(s != x) { // compress paths for fast lookup
temp = parent[x];
parent[x] = s;
x = temp;
} return s;
} void unionSet(int r1, int r2) { // union sets. More concretely, merge a small number of set into a large collection
int sum = parent[r1] + parent[r2];
if(parent[r1] > parent[r2]) {
parent[r1] = r2;
parent[r2] = sum;
} else {
parent[r2] = r1;
parent[r1] = sum;
}
} int maxw = ; // max cost
bool infw; // infinite cost int kruskal(int n, int m, int out) { // Kruskal algorithm to get minimum spanning tree
initParent(n); int u, v, r1, r2, num = , i, w = ;
for (i = ; i < m; i++) {
u = edges[i].u;
v = edges[i].v; if (u == out || v == out) {
continue;
} r1 = findRoot(u);
r2 = findRoot(v); if (r1 != r2) {
unionSet(r1, r2);
num++; if (edges[i].cost > ) { // only consider the cost which is not zero
w += edges[i].cost;
} if (num == n - ) {
break;
}
}
} //printf("num %d\n", num);
if (num < n - ) { // spanning tree is not connected
w = -; // distinguish the situation of the occurrence of infinite cost if (!infw) { // when infinite cost first comes out
infw = true;
}
} return w;
} int main() {
int n, m;
scanf("%d%d", &n, &m); int i, status;
edge e;
for (i = ; i < m; i++) {
scanf("%d%d%d%d", &e.u, &e.v, &e.cost, &status);
if (status == ) {
e.cost = ;
} edges.push_back(e);
} if (m > ) {
sort(edges.begin(), edges.end(), cmp);
} int curw, res[], index = ;
for (i = ; i <= n; i++) { // traverse all vertices to obtain the target vertex
curw = kruskal(n, m, i);
if (!infw) { // when infinite cost doesn't come out
if (curw < maxw) {
continue;
} if (curw > maxw) {
index = ;
maxw = curw;
}
res[index++] = i;
} else { // otherwise
if (curw < ) {
if (maxw > ) {
maxw = -;
index = ;
} res[index++] = i;
}
}
} if (index > ) {
for (i = ; i < index; i++) {
if (i > ) {
printf(" ");
}
printf("%d", res[i]);
}
} else {
printf("");
}
printf("\n"); system("pause");
return ;
}

  

  参考资料

pat-top 1001. Battle Over Cities - Hard Version (35)

PAT-Top1001. Battle Over Cities - Hard Version (35)的更多相关文章

  1. PAT 1013 Battle Over Cities

    1013 Battle Over Cities (25 分)   It is vitally important to have all the cities connected by highway ...

  2. PAT 1013 Battle Over Cities(并查集)

    1013. Battle Over Cities (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue It ...

  3. pat 1013 Battle Over Cities(25 分) (并查集)

    1013 Battle Over Cities(25 分) It is vitally important to have all the cities connected by highways i ...

  4. PAT 1013 Battle Over Cities (dfs求连通分量)

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...

  5. PAT A1013 Battle Over Cities (25 分)——图遍历,联通块个数

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...

  6. PAT 1013 Battle Over Cities DFS深搜

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...

  7. pat1001. Battle Over Cities - Hard Version 解题报告

    /**题目:删去一个点,然后求出需要增加最小代价的边集合生成连通图思路:prim+最小堆1.之前图中未破坏的边必用,从而把两两之间可互达的点集合 合并成一个点2.求出不同点集合的最短距离,用prim+ ...

  8. 「日常训练」Battle Over Cities - Hard Version(PAT-TOP-1001)

    题意与分析 题意真的很简单,实在不想讲了,简单说下做法吧. 枚举删除每个点,然后求最小生成树,如果这个路已经存在那么边权就是0,否则按照原来的处理,之后求花费,然后判整个图是否联通(并查集有几个roo ...

  9. PAT_A1013#Battle Over Cities

    Source: PAT A1013 Battle Over Cities (25 分) Description: It is vitally important to have all the cit ...

随机推荐

  1. 009-Python-面向对象

    1.面向对象: 1.1什么是类? 类:把一类事物的相同的特征和动作整合到一起就是类,类是一个抽象的概念: 1.2什么是对象? 对象:就是基于类而创建的一个具体事物(具体存在的)也是特征和动作整合到一起 ...

  2. Java装饰者模式

    定义:在不改变原有对象的基础上,将功能附加到对象自上 提供了比继承更有弹性的替代方案(扩展原有对象功能) 类型:结构型 扩展一个类的功能或给一个类添加附加职责 动态的给一个对象添加功能,这些功能可以再 ...

  3. 浏览器LocalStroage使用

    http://www.cnblogs.com/st-leslie/p/5617130.html

  4. 一脸懵逼学习Storm的搭建--(一个开源的分布式实时计算系统)

    Storm的官方网址:http://storm.apache.org/index.html :集群部署的基本流程(基本套路): 集群部署的流程:下载安装包.解压安装包.修改配置文件.分发安装包.启动集 ...

  5. Can't connect to X11 window server using 的问题,求解

    在JVM中加入-Djava.awt.headless=true对于tomcat ,可以修改catalina.sh,加入:CATALINA_OPTS="$CATALINA_OPTS -Djav ...

  6. [转]笔记本怎么设置WIfi热点

    https://jingyan.baidu.com/article/335530da4f774019cb41c3eb.html 随着手机的发展,流量的消耗也是大大地增加.虽然很多手机支持wifi,但是 ...

  7. Python学习(二) —— 运算符

    一:Python的编码 python2的默认编码是ascii码,而python3的默认编码是utf-8 ASCII(American Standard Code for Information Int ...

  8. 使用ycsb对hbase0.94.11 benchmark

    Ycsb下载地址:https://github.com/brianfrankcooper/YCSB/releases 目前测试hbase0.94.11,因此下载ycsb-0.1.4.tar.gz 1. ...

  9. window下用taskkill杀死进程

    TASKKILL [/S system [/U username [/P [password]]]] { [/FI filter] [/PID processid | /IM imagename] } ...

  10. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...