卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的。

卷积神经网络CNN的结构一般包含这几个层:

  1. 输入层:用于数据的输入
  2. 卷积层:使用卷积核进行特征提取和特征映射
  3. 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射
  4. 池化层:进行下采样,对特征图稀疏处理,减少数据运算量。
  5. 全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失
  6. 输出层:用于输出结果

用pytorch0.4 做的cnn网络做的minist 分类,代码如下:

 import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable # Training settings
batch_size = 64 # MNIST Dataset
train_dataset = datasets.MNIST(root='./data/',train=True,transform=transforms.ToTensor(),download=True)
test_dataset = datasets.MNIST(root='./data/',train=False,transform=transforms.ToTensor()) # Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False) class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 输入1通道,输出10通道,kernel 5*5
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) # 定义conv1函数的是图像卷积函数:输入为图像(1个频道,即灰度图),输出为 10张特征图, 卷积核为5x5正方形
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) # # 定义conv2函数的是图像卷积函数:输入为10张特征图,输出为20张特征图, 卷积核为5x5正方形
self.mp = nn.MaxPool2d(2)
# fully connect
self.fc = nn.Linear(320, 10) def forward(self, x):
# in_size = 64
in_size = x.size(0) # one batch
# x: 64*10*12*12
x = F.relu(self.mp(self.conv1(x)))
# x: 64*20*4*4
x = F.relu(self.mp(self.conv2(x)))
# x: 64*320
x = x.view(in_size, -1) # flatten the tensor
# x: 64*10
x = self.fc(x)
return F.log_softmax(x,dim=0) model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) def train(epoch):
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 200 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item())) def test():
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = Variable(data), Variable(target)
output = model(data)
# sum up batch loss
#test_loss += F.nll_loss(output, target, size_average=False).item()
test_loss += F.nll_loss(output, target, reduction = 'sum').item()
# get the index of the max log-probability
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset))) if __name__=="__main__":
for epoch in range(1, 4):
train(epoch)
test()

运行效果如下:

Train Epoch:  [/ (%)]    Loss: 4.163342
Train Epoch: [/ (%)] Loss: 2.689871
Train Epoch: [/ (%)] Loss: 2.553686
Train Epoch: [/ (%)] Loss: 2.376630
Train Epoch: [/ (%)] Loss: 2.321894 Test set: Average loss: 2.2703, Accuracy: / (%) Train Epoch: [/ (%)] Loss: 2.321601
Train Epoch: [/ (%)] Loss: 2.293680
Train Epoch: [/ (%)] Loss: 2.377935
Train Epoch: [/ (%)] Loss: 2.150829
Train Epoch: [/ (%)] Loss: 2.201805 Test set: Average loss: 2.1848, Accuracy: / (%) Train Epoch: [/ (%)] Loss: 2.238524
Train Epoch: [/ (%)] Loss: 2.224833
Train Epoch: [/ (%)] Loss: 2.240626
Train Epoch: [/ (%)] Loss: 2.217183
Train Epoch: [/ (%)] Loss: 2.357141 Test set: Average loss: 2.1426, Accuracy: / (%)

pytorch0.4版的CNN对minist分类的更多相关文章

  1. 深度学习之 cnn 进行 CIFAR10 分类

    深度学习之 cnn 进行 CIFAR10 分类 import torchvision as tv import torchvision.transforms as transforms from to ...

  2. 使用CNN做文本分类——将图像2维卷积换成1维

    使用CNN做文本分类 from __future__ import division, print_function, absolute_import import tensorflow as tf ...

  3. Tensorflow&CNN:裂纹分类

    版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/90478551 - 写在前面 本科毕业设计终于告一段落了.特 ...

  4. TensorFlow实现多层感知机MINIST分类

    TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 Tenso ...

  5. 如何基于TensorFlow使用LSTM和CNN实现时序分类任务

    https://www.jiqizhixin.com/articles/2017-09-12-5 By 蒋思源2017年9月12日 09:54 时序数据经常出现在很多领域中,如金融.信号处理.语音识别 ...

  6. 利用CNN进行多分类的文档分类

    # coding: utf-8 import tensorflow as tf class TCNNConfig(object): """CNN配置参数"&qu ...

  7. TensorFlow基础笔记(2) minist分类学习

    (1) 最简单的神经网络分类器 # encoding: UTF-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist i ...

  8. 用keras的cnn做人脸分类

    keras介绍 Keras是一个简约,高度模块化的神经网络库.采用Python / Theano开发. 使用Keras如果你需要一个深度学习库: 可以很容易和快速实现原型(通过总模块化,极简主义,和可 ...

  9. 深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)

    1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说 ...

随机推荐

  1. exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused

    1.虽然,不是大错,还说要贴一下,由于我运行run-example streaming.NetworkWordCount localhost 9999的测试案例,出现的错误,第一感觉就是Spark没有 ...

  2. Android补间动画、帧动画和属性动画使用知识介绍

    https://blog.csdn.net/zhangqunshuai/article/details/81098062

  3. Java基础知识➣面向对象(八)

    概述 Java和C#都是面向对象语言,面向对象编程是目前高级语言习惯的编程模式,与C++编写过程编程而言,面向对象使用起来高效.灵活:面向对象的三个特征:封装.继承和多态. Java面向对象 1.类封 ...

  4. 【转载】DDD分层架构的三种模式

    引言 在讨论DDD分层架构的模式之前,我们先一起回顾一下DDD和分层架构的相关知识. DDD DDD(Domain Driven Design,领域驱动设计)作为一种软件开发方法,它可以帮助我们设计高 ...

  5. NEST - 返回部分文档

    Selecting fields to return Version:5.x 英文原文地址:Selecting fields to return 有时候,不需要让 Elasticsearch 返回查询 ...

  6. C# 之设计原则

    代码也需要有秩序,就像世界需要秩序,基于SOLID architecture principles. 一.SOLID原则 S.O.L.I.D.是一组面对面向对象设计的最佳实践的设计原则.术语来自Rob ...

  7. Shell文本处理四剑客

    5.1 [grep] 全面搜索正则表达式(GREP)是一种强大的文本搜索工具,能使用正则 表达式搜索文本,并把匹配的行打印出来 过滤来自一个文件或标准输入匹配模式内容 除了grep外,还有egrep, ...

  8. Python学习(二十) —— 前端之CSS

    转载自http://www.cnblogs.com/liwenzhou/p/7999532.html 一.CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTM ...

  9. Nginx报502错误,PHP最大执行时间设置

    PHP执行时间太长导致的 我在程序的最上方写了set_time_limit(0);不管用 因为max_execution_time在 php-cgi(php-fpm) 中,该参数不会起效. 真正能够控 ...

  10. POJ1273 USACO 4.2.1 Drainage Ditches CodeVS1993草地排水 网络流 最大流 SAP

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - POJ 传送门 - CodeVS 题意概括 给出一个图,告诉你边和容量,起点是1,汇点是n,让你求最大流. 题解 ...