[CC-BLREDSET]Black and Red vertices of Tree
[CC-BLREDSET]Black and Red vertices of Tree
题目大意:
有一棵\(n(\sum n\le10^6)\)个结点的树,每个结点有一种颜色(红色、黑色、白色)。删去一个由红色点构成的连通块,使得存在一个黑点和一个白点,满足这两个点不连通。问有多少种删法。
思路:
设满足删掉这个点后,使得存在一个黑点和一个白点,满足这两个点不连通的红点为关键点。那么我们可以用两个\(\mathcal O(n)\)的树形DP求出所有的关键点。剩下的问题就变成了求有多少种全红连通块使得该连通块中至少有一个关键点,这显然又可以用一个\(\mathcal O(n)\)树形DP求出。
源代码:
#include<cstdio>
#include<cctype>
#include<vector>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e5+1,mod=1e9+7;
bool mark[N];
int col[N],cnt1[N],cnt2[N],f[N][2];
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
void dfs(const int &x,const int &par) {
cnt1[x]=cnt2[x]=0;
if(col[x]==1) cnt1[x]=1;
if(col[x]==2) cnt2[x]=1;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par) continue;
dfs(y,x);
cnt1[x]+=cnt1[y];
cnt2[x]+=cnt2[y];
}
}
void move(const int &x,const int &par) {
bool g1=false,g2=false;
if(x!=1) {
g1=cnt1[par]-cnt1[x];
g2=cnt2[par]-cnt2[x];
cnt1[x]+=cnt1[par]-cnt1[x];
cnt2[x]+=cnt2[par]-cnt2[x];
}
mark[x]=false;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par) continue;
mark[x]|=cnt1[y]&&g2;
mark[x]|=cnt2[y]&&g1;
g1|=cnt1[y];
g2|=cnt2[y];
move(y,x);
}
}
void dp(const int &x) {
col[x]=-1;
f[x][mark[x]]=1;
f[x][!mark[x]]=0;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(col[y]) continue;
dp(y);
f[x][1]=(1ll*f[x][1]*(f[y][0]+f[y][1]+1)%mod+1ll*f[x][0]*f[y][1]%mod)%mod;
f[x][0]=1ll*f[x][0]*(f[y][0]+1)%mod;
}
}
int main() {
for(register int T=getint();T;T--) {
const int n=getint();
for(register int i=1;i<n;i++) {
add_edge(getint(),getint());
}
for(register int i=1;i<=n;i++) {
col[i]=getint();
}
dfs(1,0);
move(1,0);
for(register int i=1;i<=n;i++) {
if(!col[i]) dp(i);
}
for(register int i=1;i<=n;i++) {
e[i].clear();
}
int ans=0;
for(register int i=1;i<=n;i++) {
if(col[i]==-1) (ans+=f[i][1])%=mod;
}
printf("%d\n",ans);
}
return 0;
}
[CC-BLREDSET]Black and Red vertices of Tree的更多相关文章
- BNUOJ 26229 Red/Blue Spanning Tree
Red/Blue Spanning Tree Time Limit: 2000ms Memory Limit: 131072KB This problem will be judged on HDU. ...
- CF375E Red and Black Tree(线性规划)
CF375E Red and Black Tree(线性规划) Luogu 题解时间 很明显有一个略显复杂的 $ n^3 $ dp,但不在今天讨论范围内. 考虑一些更简单的方法. 设有 $ m $ 个 ...
- [Codeforces375E]Red and Black Tree
Problem 给定一棵有边权的树.树上每个点是黑或白的.黑白点能两两交换. 求符合任意一个白点到最近黑点的距离小于等于x时,黑白点交换次数最少为多少. Solution 明显是一题树形DP.我们先跑 ...
- [CodeForces-375E]Red and Black Tree
题目大意: 给你一棵带边权的树,每个结点可能是红色或者黑色,你可以交换若干个点对使得任意一个红点到达与其最近的黑点的距离小于等于m. 思路: 动态规划. f[i][j][k]表示以i为根的子树中,连向 ...
- 「CF375E」Red and Black Tree「树形DP」
题意 给定一个结点颜色红或黑的树,问最少进行多少次交换黑.红结点使得每个红结点离最近的黑结点距离\(\leq x\). \(1\leq n \leq 500, 1 \leq x \leq 10^9\) ...
- 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)
BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...
- ACM-ICPC2018 青岛赛区网络预赛-B- Red Black Tree
题目描述 BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. A ...
- 1443. Minimum Time to Collect All Apples in a Tree
Given an undirected tree consisting of n vertices numbered from 0 to n-1, which has some apples in t ...
- easyui 键盘控制tree 上下
$.extend($.fn.tree.methods, { highlight: function(jq, target){ return jq.each(function(){ $(this).fi ...
随机推荐
- MySQL5.7.20报错Access denied for user 'root'@'localhost' (using password: NO)
在centos6.8上源码安装了MySQL5.7.20,进入mysql的时候报错如下: 解决办法如下: 在mysql的配置文件内加入: vim /etc/my.cnf skip-grant-tabl ...
- axure—日期函数
日期函数 日期函数中实现倒计时的关键点:1)gettime()函数可以取到1970年1月1日的时间,我们用倒计时结束的时间减去当前时间就能得到倒计时需要循环显示的所有时间.2)此处的“d”是倒计时结束 ...
- meter压力测试 设置一秒发送一次请求,一秒两次请求
使用jmeter进行压力测试 ,测试情况有 1.一秒钟投1次请求(一个线程) 持续30分钟的情况 2.一秒钟发送2次请求(两个线程) 持续30分钟的情况 下面说一下如何使用jmeter 测试这两种情 ...
- springboot动态多数据源切换
application-test.properties #datasource -- mysql multiple.datasource.master.url=jdbc:mysql://localho ...
- java中的相对目录问题
在java开发过程中,常常需要使用本地文件内容文件.在调试他人代码的过程中,可能不经意间改变了源代码的根目录(顶级目录),从而导致“java io filenotfoundexception ”.解决 ...
- 解决Django + DRF:403 FORBIDDEN:CSRF令牌丢失或不正确,{"detail":"CSRF Failed: CSRF cookie not set."}
我有一个Android客户端应用程序尝试使用Django + DRF后端进行身份验证.但是,当我尝试登录时,我收到以下响应: 403: CSRF Failed: CSRF token missing ...
- noi2016旷野大作战
玩了差不多两个小时61分 大概第9个点可以再拿5-6分 但是挺麻烦的并不想搞.. 这道题还是比较考验智商的??以及对那个特殊的ln函数的应用 感觉题目出的挺好的 看了题解 发现第4个点的确我应该想不到 ...
- 背包的一些idea
题解: 给出n个物品,每次能使用l-r之间的物品,问能不能表示出k,m次询问 k<=100,m,n=1e5 想了线段树分治 发现是k^2(n+m)logn claris告诉我可以直接分治 我们对 ...
- python从零安装
一 python 1.安装python https://www.python.org/ 环境变量path添加 ;C:\Python27;C:\Python27\Lib\site-packages;C: ...
- 【Android】ImageView ScaleType属性值
ImageView.ScaleType / android:scaleType值的意义区别: CENTER /center 按图片的原来size居中显示,当图片长/宽超过View的长/宽,则截取图片的 ...