传说中的网络流24题之一,我刷的第二题菜。

据说这种东西做完了就可以有质的飞越?不过看着这些Luogu评级就有点蒙蔽。

首先我们看一下题目发现这不是均分纸牌的加强板吗,但是那个环的操作极大地限制了我的思想。

我们考虑用费用流求解。

首先拆点,把每一个仓库拆成两个,一个\(x_i\)表示供给别人的货物,一个\(y_i\)表示别人供给的货物。然后建立超级源点\(S\)和超级汇点\(T\)。

我们可以很容易地知道:每一个仓库最后剩下的货物数量必定是总货物数量的平均数

然后就很简单了。我们将所有的货物量\(a_i\)减去平均数,得到新的\(a_i\)。然后讨论:

  • 当\(a_i<0\)时,这个节点需要运入货物。所以我们呢将\(S\)与\(x_i\)相连,容量就是\(-a_i\),费用为\(0\)(至于为什么为\(0\)等下会解释)
  • 当\(a_i>0\)时,这个节点需要运出货物。所以我们呢将\(y_i\)与\(T\)相连,容量就是\(a_i\),费用为\(0\)

然后对于相邻节点还可以连边:

  • 将\(x_i\)与\(y_j\)相连,容量为\(\infty\),费用为\(1\)。这个很好理解吧,相邻的需要直接运输过去即可,费用就是运输量。
  • 将\(x_i\)与\(x_j\)相连,容量为\(\infty\),费用为\(1\)。这个还是要想一下的,相当于将\(x_i\)的货物暂时存放在\(x_j\)处,为其他的运输做准备。

然后由于所有的费用都在这些物体之间的运输中计算掉了,因此源汇点的费用就是\(0\)了。(其实也就是把那些供给的点连到一起方便跑而已,一个常见的技巧)

然后我们直接跑MCMF即可,然后引用一段著名的话:

最大流保证能够平衡货物,而最小费用流能保证运输的货物最少。

CODE

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=205,INF=2e9;
queue <int> q;
struct edge
{
int to,next,c,f;
}e[N<<3];
int head[N],dis[N],cap[N],a[N],pre[N],last[N],s,t,n,ave,cnt=-1;
bool vis[N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline void add(int x,int y,int c,int f)
{
e[++cnt].to=y; e[cnt].c=c; e[cnt].f=f; e[cnt].next=head[x]; head[x]=cnt;
}
inline void insert(int x,int y)
{
add(x,y,INF,1); add(y,x,0,-1); add(x,y+n,INF,1); add(y+n,x,0,-1);
}
inline bool SPFA(void)
{
memset(pre,-1,sizeof(pre));
memset(dis,63,sizeof(dis));
memset(cap,63,sizeof(cap));
memset(vis,0,sizeof(vis));
while (!q.empty()) q.pop();
q.push(s); vis[s]=1; dis[s]=0;
while (!q.empty())
{
int now=q.front(); q.pop(); vis[now]=0;
for (register int i=head[now];i!=-1;i=e[i].next)
if (e[i].c&&dis[e[i].to]>dis[now]+e[i].f)
{
dis[e[i].to]=dis[now]+e[i].f;
cap[e[i].to]=min(cap[now],e[i].c);
pre[e[i].to]=now; last[e[i].to]=i;
if (!vis[e[i].to]) vis[e[i].to]=1,q.push(e[i].to);
}
}
return pre[t]^-1;
}
inline void MCMF(void)
{
int tot=0;
while (SPFA())
{
tot+=cap[t]*dis[t]; int now=t;
while (now!=s)
{
e[last[now]].c-=cap[t];
e[last[now]^1].c+=cap[t];
now=pre[now];
}
}
printf("%d",tot);
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); s=0,t=(n<<1)+1;
memset(head,-1,sizeof(head));
memset(e,-1,sizeof(e));
for (i=1;i<=n;++i)
read(a[i]),ave+=a[i]; ave/=n;
for (i=1;i<=n;++i)
{
a[i]-=ave; if (a[i]>0) add(s,i,a[i],0),add(i,s,0,0); else add(i+n,t,-a[i],0),add(t,i+n,0,0);
if (i==1) insert(1,n),insert(1,2); else
if (i==n) insert(n,1),insert(n,n-1); else insert(i,i-1),insert(i,i+1);
}
MCMF(); return 0;
}

Luogu P4016 负载平衡问题的更多相关文章

  1. 洛谷 P4016负载平衡问题【费用流】题解+AC代码

    洛谷 P4016负载平衡问题 P4014 分配问题[费用流]题解+AC代码 负载平衡问题 题目描述 GG 公司有n个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n ...

  2. P4016 负载平衡问题 网络流

    P4016 负载平衡问题 题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运 ...

  3. P4016 负载平衡问题(最小费用最大流)

    P4016 负载平衡问题 题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬 ...

  4. P4016 负载平衡问题 网络流重温

    P4016 负载平衡问题 这个题目现在第二次做,感觉没有这么简单,可能是我太久没有写这种题目了,基本上都忘记了,所以我连这个是费用流都没有看出来. 有点小伤心,知道是费用流之后,我居然还拆点了. 这个 ...

  5. 洛谷P4016负载平衡

    题目 负载平衡问题是一个比较经典的网络流问题,但是该问题还有一个数学贪心法. 所以做这个题前,其实可以做一下均分纸牌问题. 均分纸牌问题 均分纸牌问题可以说是作为贪心的入门题. 做法 首先我们应当把原 ...

  6. (洛谷P2512||bzoj1045) [HAOI2008]糖果传递 || 洛谷P4016 负载平衡问题 || UVA11300 Spreading the Wealth || (洛谷P3156||bzoj3293) [CQOI2011]分金币

    bzoj1045 洛谷P4016 洛谷P2512 bzoj3293 洛谷P3156 题解:https://www.luogu.org/blog/LittleRewriter/solution-p251 ...

  7. 洛谷 [P4016] 负载平衡问题

    贪心做法 第一眼看见觉得和均分纸牌差不多,然而因为这是环形的,并不能用均分纸牌的方法做,但是均分纸牌的思想仍然适用 首先我们假设平均数为sum1. 那么对于第1个人,我们假设他给第N个人K个糖果, 第 ...

  8. 『题解』洛谷P4016 负载平衡问题

    title: categories: tags: - mathjax: true --- Problem Portal Portal1:Luogu Portal2: LibreOJ Descripti ...

  9. P2512 [HAOI2008]糖果传递&&P3156 [CQOI2011]分金币&&P4016 负载平衡问题

    P2512 [HAOI2008]糖果传递 第一步,当然是把数据减去平均数,然后我们可以得出一串正负不等的数列 我们用sum数组存该数列的前缀和.注意sum[ n ]=0 假设为链,那么可以得出答案为a ...

随机推荐

  1. 安卓开发_深入理解Content Provider

    一.Content Provider概述 Content Provider用于保存和获取数据,并使其对所有应用程序可见,这是不同应用程序之间共享数据的唯一方式,因为在Android中没有提供所有应用可 ...

  2. (后端)如何将数据库的表导出生成Excel?

    1.如何通过元数据拿到数据库的信息? 2.如何用Java生成Excel表? 3.将数据库中的表导出生成Excel案例 如何通过元数据拿到数据库的信息 元数据:描述数据的数据 Java中使用元数据的两个 ...

  3. < meta http-equiv = "X-UA-Compatible" content = "IE=edge,chrome=1" />的意义

    X-UA-Compatible是神马? X-UA-Compatible是IE8的一个专有<meta>属性,它告诉IE8采用何种IE版本去渲染网页,在html的<head>标签中 ...

  4. Windows 系统光盘刻录教程-光盘怎样刻录?刻录数据光盘用"轨道一次写入"还是"光盘一次写入"?

    刻录光盘需要 DVD-RW 的光驱,并且光盘需要 DVD-R 的光盘用于刻录.刻录工具可以使用https://cn.ultraiso.net/ 来进行刻录.选择软件目录 中 工具 ,选择 刻录光盘映像 ...

  5. linux 系统中用root切换到普通用户时显示的异常如-bash-4.1$

    解决办法: 其实就是普通用户的家目录缺少配置文件导致: [root@xxx ~]# su - oldboy -bash-4.1$ 原因是普通用户的家目录下缺少文件: [root@xxx ~]# ls ...

  6. python遍历本地文件系统 按文件大小排序

    在这个例子中,主要会用到python内置的和OS模块的几个函数: os.walk() : 该方法用来遍历指定的文件目录,返回一个三元tuple(dirpath, dirnames, filenames ...

  7. Mysql基础之 基础知识解释

    Mysql基础知识 RDBMS:关系型数据库管理系统.是将数据组织成相关的行和列的系统 存储过程:是存储在数据库中的一段声明性语句.触发器.java.php等都可以调用其存储过程.早期的mysql版本 ...

  8. February 9th, 2018 Week 6th Friday

    Every one of us want to ameliorate our own condition. You can only cure retail but you can prevent w ...

  9. 阿里八八β阶段Scrum(2/5)

    今日进度 黄梅玲:尝试修复日程界面的不可点击问题 李嘉群:修改数据库,增加写入识别功能临时文本存入的项 张岳:信息抽取算法的编写 叶文滔:尝试侧边栏的信息调用,但因为侧边栏不是单独的活动,调用碰到了困 ...

  10. 从研发到市场,一个C#程序员半年神奇之旅

    序 距离上次在博客园发布文章已经过了大约有一年了,由于最近一系列神奇的际遇,让我非常强烈意愿的提起笔来给大家描述我最近一段时间的经历,希望大家根据我的经历做一些参考,我尽量写的逻辑通顺,如果各位兄弟阅 ...