洛谷 P2420 让我们异或吧 解题报告
P2420 让我们异或吧
题目描述
异或是一种神奇的运算,大部分人把它总结成不进位加法.
在生活中…xor运算也很常见。比如,对于一个问题的回答,是为1,否为0.那么:
(A是否是男生 )xor( B是否是男生)=A和B是否能够成为情侣
好了,现在我们来制造和处理一些复杂的情况。比如我们将给出一颗树,它很高兴自己有N个结点。树的每条边上有一个权值。我们要进行M次询问,对于每次询问,我们想知道某两点之间的路径上所有边权的异或值。
输入输出格式
输入格式:
输入文件第一行包含一个整数N,表示这颗开心的树拥有的结点数,以下有N-1行,描述这些边,每行有3个数,u,v,w,表示u和v之间有一条权值为w的边。接下来一行有一个整数M,表示询问数。之后的M行,每行两个数u,v,表示询问这两个点之间的路径上的权值异或值。
输出格式:
输出M行,每行一个整数,表示异或值
说明
对于40%的数据,有1 ≤ N,M ≤ 3000;
对于100%的数据,有1 ≤ N ,M≤ 100000。
积累题:
引理:异或的逆运算是异或。
证明:前导知识,异或具有结合律和交换律,这点很好证明。
转换:任取整数\(a,b\),令\(c=a \ xor \ b\),证明\(a=c \ xor \ b\)
\(a=(a \ xor \ b) \ xor \ b=a \ xor \ (b \ xor \ b)=a \ xor \ 0=a\)
用到了两个小性质,\(a \ xor \ 0=a\),\(a \ xor \ a=0\)
这题随意选根像前缀和处理到根节点距离一样处理即可。
对两点\(a,b\),答案即为\(d[a] \ xor \ d[b]\),\(d[i]\)为到根的每条边的值异或起来
code:
#include <cstdio>
const int N=100010;
int head[N],w[N<<1],cnt=0,to[N<<1],next[N<<1];
int n,m,d[N],used[N];
void add(int u,int v,int w0)
{
to[++cnt]=v;next[cnt]=head[u];w[cnt]=w0;head[u]=cnt;
}
void dfs(int now)
{
used[now]=1;
for(int i=head[now];i;i=next[i])
{
int v=to[i];
if(!used[v])
{
d[v]=d[now]^w[i];
used[v]=1;
dfs(v);
}
}
}
int main()
{
scanf("%d",&n);
int u,v;
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&u,&v,w);
add(u,v,w[0]),add(v,u,w[0]);
}
dfs(1);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
printf("%d\n",d[u]^d[v]);
}
return 0;
}
2018.6.15
洛谷 P2420 让我们异或吧 解题报告的更多相关文章
- 洛谷——P2420 让我们异或吧
P2420 让我们异或吧 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B ...
- 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告
P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...
- 【洛谷】CYJian的水题大赛 解题报告
点此进入比赛 \(T1\):八百标兵奔北坡 这应该是一道较水的送分题吧. 理论上来说,正解应该是DP.但是,.前缀和优化暴力就能过. 放上我比赛时打的暴力代码吧(\(hl666\)大佬说这种做法的均摊 ...
- 洛谷 [P2420] 让我们异或吧
某两点之间的路径上所有边权的异或值即dis1^dis2--^disn. 由于x^y^y=x,所以dfs预处理出每一点到根节点的异或值,对于每次询问,直接输出 disu^disv. #include & ...
- 洛谷P2420 让我们异或吧(树链剖分)
题目描述异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B是否是男生)=A和B是否能够 ...
- [洛谷P2420] 让我们异或吧
题目链接:让我们异或吧 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B是 ...
- 洛谷 P4151 [WC2011]最大XOR和路径 解题报告
P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...
- 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- 洛谷 P3143 [USACO16OPEN]钻石收藏家Diamond Collector 解题报告
P3143 [USACO16OPEN]钻石收藏家Diamond Collector 题目描述 Bessie the cow, always a fan of shiny objects, has ta ...
随机推荐
- WebApi 异步请求(HttpClient)
还是那几句话: 学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 废话不多说,直接进入正题: 今天公司总部要求各个分公司把短信接口对接上,所谓的 ...
- Springboot 2.0.4 整合Mybatis出现异常Property 'sqlSessionFactory' or 'sqlSessionTemplate' are required
在使用Springboot 2.0.4 整合Mybatis的时候出现异常Property 'sqlSessionFactory' or 'sqlSessionTemplate' are require ...
- ASP.NET Core 2.1 源码学习之 Options[2]:IOptions
在 上一章 中,介绍了Options的注册,而在使用时只需要注入 IOption<T> 即可: public ValuesController(IOptions<MyOptions& ...
- Ubuntu16.04密码正确 进不去桌面系统(已测试恢复正常)
遇到过两次ubuntu输入密码正确,但是进不去系统,输入密码后,跳转到一下界面 之后又返回到登陆界面,一直这样循环输入密码. Guest用户可以. 解决办法: 1.进入tty下 ...
- A2dp连接流程源码分析
在上一篇文章中,我们已经分析了:a2dp初始化流程 这篇文章主要分析a2dp的连接流程,其中还是涉及到一些底层的profile以及protocol,SDP.AVDTP以及L2CAP等. 当蓝牙设备与主 ...
- Error【0007】:zabbix中因为curl版本过低而无法发送邮件
1. 错误背景 在centos6.5上,源码部署zabbix最新版本zabbix-3.2.14.部署后之后,在配置邮件发送报警时出错 2. 错误提示 3. 原因分析 从网上检索的结果是说,系统中的cu ...
- MySQL高可用方案-PXC环境部署记录
之前梳理了Mysql+Keepalived双主热备高可用操作记录,对于mysql高可用方案,经常用到的的主要有下面三种: 一.基于主从复制的高可用方案:双节点主从 + keepalived 一般来说, ...
- xcode archive 去掉dsym文件和添加dsym文件
打包慢,让人发狂!!! 所以我们尝试的去掉一些测试时候用不到的东西 比如DSYM: 这DSYM是收集奔溃的.在测试的时候不需要这些东西的所以去掉就好: 项目 Build Settings -> ...
- 移动app rem
(function (doc, win) { var docEl = doc.documentElement, resizeEvt = 'orientationchange' in window ? ...
- LINUX第三次实践:程序破解
LINUX第三次实践:程序破解 标签(空格分隔): 20135328陈都 一.掌握NOP.JNE.JE.JMP.CMP汇编指令的机器码 NOP:NOP指令即"空指令".执行到NOP ...