设$n$为正整数,$a_1,a_2,\cdots,a_n;b_1,b_2,\cdots,b_n;A,B$都是正数,
满足$a_i\le b_i,a_i\le A,i=1,2,\cdots,n$ 且$\prod\limits_{i=1}^n{\dfrac{b_i}{a_i}}\le\dfrac{B}{A}$.
证明:$\prod\limits_{i=1}^n{\dfrac{b_i+1}{a_i+1}}\le\dfrac{B+1}{A+1}$(2018全国联赛加试题第一题)


记$\dfrac{b_i}{a_i}=1+x_i,x_i\ge0,(i=1,2,\cdots)$
记$f_k=\sum\limits_{1\le i_1<i_2\cdots<i_k\le n}{x_{i_1}x_{i_2}\cdots x_{i_k}}\ge0$
则$\prod\limits_{i=1}^{n}\dfrac{1+b_i}{1+a_i}=\prod\limits_{i=1}^n{\dfrac{1+a_i(1+x_i)}{1+a_i}}\le \prod\limits_{i=1}^{n}\dfrac{1+A(1+x_i)}{1+A}=\prod\limits_{i=1}^{n}\left(1+\dfrac{A}{1+A}x_i\right)$
$\overset{\textbf{此处用到韦达定理}}{=}1+\dfrac{A}{1+A}f_1+\left(\dfrac{A}{1+A}\right)^2f_2+\cdots+\left(\dfrac{A}{1+A}\right)^nf_n$
$\overset{\textbf{变形}}{=}\dfrac{1+A(1+f_1+f_2+\cdots+f_n)}{1+A}+\dfrac{A}{1+A}\sum\limits_{k=1}^n\left((\dfrac{A}{1+A})^{k-1}-1)f_k\right)$
$\overset{\textbf{此处用到韦达定理}}{=}\dfrac{1+A\prod\limits_{k=1}^n(1+x_i)}{1+A}+\dfrac{A}{1+A}\sum\limits_{k=1}^n\left((\dfrac{A}{1+A})^{k-1}-1)f_k\right)$
$\le\dfrac{1+A\prod\limits_{k=1}^n(1+x_i)}{1+A}\le\dfrac{1+B}{1+A}$

MT【216】韦达定理的更多相关文章

  1. 11月26号host

    127.0.0.1 localhost255.255.255.255 broadcasthost::1 localhostfe80::1%lo0 localhost # Google start216 ...

  2. MT【217】韦达定理应用

    若2018次方程$x^{2018}-4036x^{2017}+a_{2016}x^{2016}+\cdots+a_1x+a_0=0$ 有2018个正实数, 则对于所有可能的方程$\sum\limits ...

  3. Android Studio Error:CreateProcess error=216

    Error:CreateProcess error=216, This version of %1 is not compatible with the version of Windows you' ...

  4. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  5. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  6. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

  8. DCMTK3.6.0 (MT支持库)安装 完整说明

    环境WIN7 + VisualStudio2010 + dcmtk3.6.0 + Cmake2.8.6 准备工作: 从dcmtk官方网站下载源代码及支持库文件.分别名为:dcmtk-3.6.0 dcm ...

  9. visual studio运行时库MT、MTd、MD、MDd的研究(转载)

    转载:http://blog.csdn.net/ybxuwei/article/details/9095067 转载:http://blog.sina.com.cn/s/blog_624485f701 ...

随机推荐

  1. React-redux-saga

    新建sagas.js import { takeEvery , put} from 'redux-saga/effects' import axios from 'axios'; import { G ...

  2. WPF中TreeView.BringIntoView方法的替代方案

    原文:WPF中TreeView.BringIntoView方法的替代方案 WPF中TreeView.BringIntoView方法的替代方案 周银辉 WPF中TreeView.BringIntoVie ...

  3. 手机端@media的屏幕适配

    @media only screen and (width: 320px) { html { font-size: 16px; }} @media only screen and (width: 36 ...

  4. .Net并行编程(一)-TPL之数据并行

    前言 许多个人计算机和工作站都有多个CPU核心,可以同时执行多个线程.利用硬件的特性,使用并行化代码以在多个处理器之间分配工作. 应用场景 文件批量上传 并行上传单个文件.也可以把一个文件拆成几段分开 ...

  5. ABPZero中的Name和SurName处理,以及EmailAddress解决方案(完美)。

    使用ABPzero的朋友们都知道,User表中有Name和Surname两个字段,这两个字段对于国内的用户来说相当的不友好. 以及我们的一些系统中是不会涉及到EmailAddress字段.也就是说不会 ...

  6. 分布式监控系统Zabbix-3.0.3-完整安装记录(0)

    一.Linux下开源监控系统简单介绍1)cacti:存储数据能力强,报警性能差2)nagios:报警性能差,存储数据仅有简单的一段可以判断是否在合理范围内的数据长度,储存在内存中.比如,连续采样数据存 ...

  7. 个人阅读作业 --软件工程M1/M2总结

    软件工程M1/M2总结 写在前面的话: 这学期的软件工程伴着考期的展开逐渐落下帷幕,回顾这学期的软件工程,我感觉我的热情在一次又一次的失落中逐步消耗殆尽,每个人对于这门课的体验都会有所不同吧,可以确定 ...

  8. ELF文件格式分析

    一般的 ELF 文件包括三个索引表:ELF  header,Program  header  table,Section header table. 1)ELF  header:在文件的开始,保存了路 ...

  9. Linux内核分析 期末总结

    Linux内核分析 期末总结 一.知识概要 1. 计算机是如何工作的 存储程序计算机工作模型:冯诺依曼体系结构 X86汇编基础 会变一个简单的C程序分析其汇编指令执行过程 2. 操作系统是如何工作的 ...

  10. 基于UML的需求分析和系统设计

    小序: 从学生时代就接触到UML,几年的工作中也没少使用,各种图形的概念.图形的元素和属性,以及图形的画法都不能说不熟悉.但是怎样在实际中有效地使用UML使之发挥应有的作用,怎样捕捉用户心中的需求并转 ...