常见套路:棋盘黑白染色,就变成了一张二分图

然后如果选了黑点,四周的白点就不能选了,也是最小割的套路。先把所有价值加起来,再减掉一个最少的不能选的价值,也就是割掉表示不选

建边(S,黑点i,v[i]),(黑点i,i四周的白点,inf),(白点j,T,v[j])

(黑点还是白点,你必须要割一个...)

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=*+,maxm=**+,inf=1e9; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Edge{
int a,b,l,ne;
}eg[maxm];
int egh[maxn],ect=,cur[maxn];
int N,M,S,T;
int dep[maxn];
queue<int> q; inline void adeg(int a,int b,int c){
// printf("!%d %d %d\n",a,b,c);
eg[++ect].a=a,eg[ect].b=b,eg[ect].l=c,eg[ect].ne=egh[a],egh[a]=ect;
eg[++ect].a=b,eg[ect].b=a,eg[ect].l=,eg[ect].ne=egh[b],egh[b]=ect;
} inline bool bfs(){
CLR(dep,);CLR(cur,-);
dep[S]=,q.push(S);
while(!q.empty()){
int p=q.front();q.pop();
for(int i=egh[p];i;i=eg[i].ne){
int b=eg[i].b;
if(!eg[i].l||dep[b]) continue;
dep[b]=dep[p]+;
q.push(b);
}
}
return dep[T];
} int dinic(int x,int y){
if(x==T) return y;
if(cur[x]==-) cur[x]=egh[x];
int tmp=y;
for(int &i=cur[x];i;i=eg[i].ne){
int b=eg[i].b;
if(dep[b]!=dep[x]+||!eg[i].l) continue;
int re=dinic(b,min(tmp,eg[i].l));
tmp-=re,eg[i].l-=re,eg[i^].l+=re;
if(!tmp) break;
}return y-tmp;
}
int main(){
//freopen("","r",stdin);
int i,j,k;
M=rd(),N=rd();
S=N*M+,T=N*M+;
int ans=;
for(i=;i<=M;i++){
for(j=;j<=N;j++){
int id=(i-)*N+j;
k=rd();ans+=k;
if(((i&)&&(j&))||(!(i&)&&!(j&))){
adeg(S,id,k);
if(j<N) adeg(id,id+,inf);
if(j>) adeg(id,id-,inf);
if(i<M) adeg(id,id+N,inf);
if(i>) adeg(id,id-N,inf);
}else adeg(id,T,k);
}
}
while(bfs()) ans-=dinic(S,inf);
printf("%d\n",ans);
return ;
}

luogu2774 [网络流24题]方格取数问题 (最小割)的更多相关文章

  1. AC日记——[网络流24题]方格取数问题 cogs 734

    734. [网络流24题] 方格取数问题 ★★☆   输入文件:grid.in   输出文件:grid.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: 在一个有m*n ...

  2. Cogs 734. [网络流24题] 方格取数问题(最大闭合子图)

    [网络流24题] 方格取数问题 ★★☆ 输入文件:grid.in 输出文件:grid.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 在一个有m*n 个方格的棋盘中,每个方格 ...

  3. [网络流24题] 方格取数问题/骑士共存问题 (最大流->最大权闭合图)

    洛谷传送门 LOJ传送门 和太空飞行计划问题一样,这依然是一道最大权闭合图问题 “骑士共存问题”是“方格取数问题”的弱化版,本题解不再赘述“骑士共存问题”的做法 分析题目,如果我们能把所有方格的数都给 ...

  4. [网络流24题] 方格取数问题(cogs 734)

    «问题描述:在一个有m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.«编程任务:对于给定的方格棋 ...

  5. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  6. LuoguP2774 方格取数问题(最小割)

    题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于 ...

  7. 洛谷P2774 方格取数问题(最小割)

    题意 $n \times m$的矩阵,不能取相邻的元素,问最大能取多少 Sol 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连 ...

  8. P2762 [网络流24题]太空飞行计划问题(最小割)

    地址 最大权闭合子图裸题,不说了吧,求方案就是把s集遍历一遍. 错误记录:dfs那块忘判断残量了,11分×1. #include<cstdio> #include<iostream& ...

  9. XTU 二分图和网络流 练习题 C. 方格取数(1)

    C. 方格取数(1) Time Limit: 5000ms Memory Limit: 32768KB 64-bit integer IO format: %I64d      Java class ...

随机推荐

  1. Luogu P2657 [SCOI2009]windy数

    一道比较基础的数位DP,还是挺套路的. 首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式: \(f[a,b]=f(b)-f(a-1)\) 然后考虑如何求解\(f(x)\).我 ...

  2. ML.NET 示例:开篇

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  3. CentOS 7 安装Redis

    Linux安装Redis 一.下载并安装 $ wget http://download.redis.io/releases/redis-2.8.17.tar.gz $ tar xzf redis-2. ...

  4. [译]Kubernetes 分布式应用部署和人脸识别 app 实例

    原文地址:KUBERNETES DISTRIBUTED APPLICATION DEPLOYMENT WITH SAMPLE FACE RECOGNITION APP 原文作者:skarlso 译文出 ...

  5. LVM : 快照

    LVM 机制还提供了对 LV 做快照的功能,也就是说可以给文件系统做一个备份,这也是设计 LVM 快照的主要目的.LVM 的快照功能采用写时复制技术(Copy-On-Write,COW),这比传统的备 ...

  6. 【亲测有效】无法定位链接器!请检查 tools\link.ini 中的配置是否正确的解决方案

    在进行易语言静态编译的时候,出现了如下错误: 正在进行名称连接...正在统计需要编译的子程序正在编译...正在生成主程序入口代码程序代码编译成功等待用户输入欲编译到的文件名正在进行名称连接...开始静 ...

  7. centos6下redis cluster集群部署过程

    一般来说,redis主从和mysql主从目的差不多,但redis主从配置很简单,主要在从节点配置文件指定主节点ip和端口,比如:slaveof 192.168.10.10 6379,然后启动主从,主从 ...

  8. <a>标签中href="javascript:;"** 为什么 style不用src**

    &src/href <!--href 用于标示资源和文档关系,src 用于替换标签内容--> <img src="xxx.jpg"/> <sc ...

  9. 基于SSH框架的考勤管理系统的设计与实现

    基于SSH框架的考勤管理系统的设计与实现

  10. zookeeper安装(Linux)

    安装环境: Linux:centos6.4 Jdk:1.7以上版本 Zookeeper是java开发的可以运行在windows.linux环境.需要先安装jdk. 安装步骤: 第一步:安装jdk 第二 ...