一、简单数学操作

1、逐元素操作

t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域。
a = t.arange(0,6).view(2,3)
print("a:",a)
print("t.cos(a):",t.cos(a))
print("a % 3:",a % 3) # t.fmod(a, 3)
print("a ** 2:",a ** 2) # t.pow(a, 2)
print("t.clamp(a, min=2, max=4)",t.clamp(a,min=2,max=4))
a:
0 1 2
3 4 5
[torch.FloatTensor of size 2x3] t.cos(a):
1.0000 0.5403 -0.4161
-0.9900 -0.6536 0.2837
[torch.FloatTensor of size 2x3] a % 3:
0 1 2
0 1 2
[torch.FloatTensor of size 2x3] a ** 2:
0 1 4
9 16 25
[torch.FloatTensor of size 2x3] t.clamp(a, min=2, max=4)
2 2 2
3 4 4
[torch.FloatTensor of size 2x3]

2、归并操作

b = t.ones(2,3)
print("b.sum():",b.sum(dim=0,keepdim=True))
print("b.sum():",b.sum(dim=0,keepdim=False))
b.sum():
2 2 2
[torch.FloatTensor of size 1x3] b.sum():
2
2
2
[torch.FloatTensor of size 3]

cumsum和cumprob(累加和累乘)属于特殊的归并,结果相对于输入并没有降维。

3、比较操作

之前有说过,t.max用法较为特殊;而a.topk是个对于深度学习很是方便的函数。

a = t.linspace(0,15,6).view(2,3)
print("a:",a)
print("a.sort(2):\n",a.sort(dim=1)) # 在某个维度上排序
print("a.topk(2):\n",a.topk(2,dim=1)) # 在某个维度上寻找top-k
print("t.max(a):\n",t.max(a)) # 不输入dim的话就是普通的max
print("t.max(a,dim=1):\n",t.max(a,dim=1)) # 输入dim的话就会集成argmax的功能
a:
0 3 6
9 12 15
[torch.FloatTensor of size 2x3] a.sort(2):
(
0 3 6
9 12 15
[torch.FloatTensor of size 2x3]
,
0 1 2
0 1 2
[torch.LongTensor of size 2x3]
)
a.topk(2):
(
6 3
15 12
[torch.FloatTensor of size 2x2]
,
2 1
2 1
[torch.LongTensor of size 2x2]
)
t.max(a):
15.0
t.max(a,dim=1):
(
6
15
[torch.FloatTensor of size 2]
,
2
2
[torch.LongTensor of size 2]
)

二、Numpy和Tensor

1、数组和张量内存共享

import numpy as np

# 数组和Tensor互换
a = t.ones(2,3)
b = a.numpy()
c = t.from_numpy(b)
c[0,0] = 0
print(a)
 0  1  1
1 1 1
[torch.FloatTensor of size 2x3]

2、广播原理及模拟

# 广播法则
# 1.所有数组向shape最长的数组看齐,不足的在前方补一
# 2.两个数组要么在某个维度长度一致,要么一个为一,否则不能计算
# 3.对长度为一的维度,计算时复制元素扩充至和此维度最长数组一致
a = t.ones(3,2)
b = t.ones(2,3,1)
print(a + b) # 先a->(1,3,2)然后a,b->(2,3,2)
(0 ,.,.) =
2 2
2 2
2 2 (1 ,.,.) =
2 2
2 2
2 2
[torch.FloatTensor of size 2x3x2]

使用尺寸调整函数模拟广播过程如下,

# 手工复现广播过程
# expend可以扩张维度的数字大小,repeat类似,但是expend不会复制数组内存,节约空间
# 被扩充维度起始必须是1才行
print(a.unsqueeze(0).expand(2,3,2) + b.expand(2,3,2))
print(a.view(1,3,2).expand(2,3,2) + b.expand(2,3,2))
(0 ,.,.) =
2 2
2 2
2 2 (1 ,.,.) =
2 2
2 2
2 2
[torch.FloatTensor of size 2x3x2] (0 ,.,.) =
2 2
2 2
2 2 (1 ,.,.) =
2 2
2 2
2 2
[torch.FloatTensor of size 2x3x2]

3、expand方法

我们来看看expand方法,它要求我们的被扩展维度为1才行(如下),如果不是1则扩展失败。

expand方法不会复制数组,不会占用额外空间,只有在需要时才进行扩展,很节约内存。

a = t.ones(1)
print(a.shape)
b = a.expand(6)
a = 2
print(a)
torch.Size([1])
2
 1
1
1
1
1
1
[torch.FloatTensor of size 6]

『PyTorch』第五弹_深入理解Tensor对象_中下:数学计算以及numpy比较_&_广播原理简介的更多相关文章

  1. 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法

    在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...

  2. 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数

    一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...

  3. 『PyTorch』第五弹_深入理解autograd_中:Variable梯度探究

    查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和ho ...

  4. 『PyTorch』第五弹_深入理解Tensor对象_下:从内存看Tensor

    Tensor存储结构如下, 如图所示,实际上很可能多个信息区对应于同一个存储区,也就是上一节我们说到的,初始化或者普通索引时经常会有这种情况. 一.几种共享内存的情况 view a = t.arang ...

  5. 『PyTorch』第五弹_深入理解Tensor对象_中上:索引

    一.普通索引 示例 a = t.Tensor(4,5) print(a) print(a[0:1,:2]) print(a[0,:2]) # 注意和前一种索引出来的值相同,shape不同 print( ...

  6. 『PyTorch』第五弹_深入理解Tensor对象_上:初始化以及尺寸调整

    一.创建Tensor 特殊方法: t.arange(1,6,2)t.linspace(1,10,3)t.randn(2,3) # 标准分布,*size t.randperm(5) # 随机排序,从0到 ...

  7. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

    『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...

  8. 『PyTorch』第三弹重置_Variable对象

    『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...

  9. 『PyTorch』第十弹_循环神经网络

    RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...

随机推荐

  1. Centos7.1环境下搭建SVN

    环境准备: 系统 配置 IP Centos7.1 1核2G+60GB硬盘 10.10.28.204 1.安装 sudo yum install subversion 查看版本 svnserve –-v ...

  2. 271A

    #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h& ...

  3. JDK 1.8源码阅读 TreeMap

    一,前言 TreeMap:基于红黑树实现的,TreeMap是有序的. 二,TreeMap结构 2.1 红黑树结构 红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性.同时红黑树更是一颗 ...

  4. 二、认识Xcode(第一个工程:Hello world)

    到一个未知的世界去冒险,怎么可以不熟悉自己的武器装备呢?况且我们现在也就Xcode这一样装备,攻击防御全靠它,要是关键时刻使不出技能,那不gg了? 所以接下来我们会大致介绍Xcode的常用界面,并在最 ...

  5. 台式电脑、笔记本快捷选择启动项Boot 快捷键大全

    我们在安装系统时,会去设置电脑是从硬盘启动.U盘启动.光驱启动.网卡启动. 一般设置的方法有两种:一种是进BIOS主板菜单设置启动项顺序:另一种就是我在这里要介绍的快捷选择启动项. 以下是网友整理的各 ...

  6. Oracle 11.2.0.4 RAC重建EM案例

    环境:Oracle 11.2.0.4 RAC 重建EM 背景:客户之前的EM已经被损坏,需要重建EM 重建EM的方案有很多,其中最简单的方法是:直接使用emca重建,oracle用户下,只需一条命令搞 ...

  7. Spring框架的第三天

    ## Spring框架的第三天 ## ---------- **课程回顾:Spring框架第二天** 1. IOC的注解方式 * @Value * @Resource(name="" ...

  8. html5 javascript 事件练习3随机键盘

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  9. Scala 偏函数

    如果你想定义一个函数,而让它只接受和处理其参数定义域范围内的子集,对于这个参数范围外的参数则抛出异常,这样的函数就是偏函数(顾名思异就是这个函数只处理传入来的部分参数). 偏函数是个特质其的类型为Pa ...

  10. SpringMvc HandlerMethodResolver 的 handlerMethods & ServletHandlerMethodResolver 的 mappings 在哪里初始化的 ?

    HandlerMethodResolver 的 handlerMethods & ServletHandlerMethodResolver 的 mappings 在哪里初始化的 ? 如下图: