io.netty.channel.DefaultChannelPipeline implements ChannelPipleline
 

DefaultChannelPiple给出了ChannelPipleline的默认实现。ChannelPipleline是一个双向链表,本章的内容是分析默认实现中双向链表的实现。

双向列表的的数据结构

  DefaultChannelPiple使用了三种节点类型: HeadContext, TailContext, DefaultChannelHandlerContext,这三中类型都是派生自AbstractChannelHandlerContext,这个抽象类中有双向链表所需要的两个关键属性next和prev。链表的初始化代码在构造方法中。

 protected DefaultChannelPipeline(Channel channel) {
this.channel = ObjectUtil.checkNotNull(channel, "channel"); 4 tail = new TailContext(this);
5 head = new HeadContext(this);
6
7 head.next = tail;
8 tail.prev = head;
}

  构造方法的第4-8行,时候是链表的初始化代码。HeadContext是链表头的类型,TailContext是链表尾的类型,这两个类型是DefaultChannelPiple的内部类。链表的头和尾节点是不持有channelHandler的,相比于中间节点,这两个节点比较特殊。有专门的方法用来创建中间节点,如下所示:

 private AbstractChannelHandlerContext newContext(EventExecutorGroup group, String name, ChannelHandler handler) {
return new DefaultChannelHandlerContext(this, childExecutor(group), name, handler);
}

 

添加channelHandler

  向链表中添加channelHandler的方法有两大类型:

  1. addFirst,addLast
  2. addAfter,addBefore

  在ChannelPiple中,每一个handler是有名字的,如果用户没有给handler命名,在添加过程中会为它生成一个不重复的名字。如果用户给handler命名重复,添加handler将会失败同时抛出异常。两种类型的添加方法最大的不同之处在于,第1中会把新节点添加在head之后或tail之前。第2种必须先要首先找到指定名字的节点,然后把新节点添加到这个节点之后或之前。如果没找到指定名字的节点也会导致添加失败同时抛出异常。下面以addAfter为例分析添加过程。

 public final ChannelPipeline addAfter(
EventExecutorGroup group, String baseName, String name, ChannelHandler handler) {
final AbstractChannelHandlerContext newCtx;
final AbstractChannelHandlerContext ctx; synchronized (this) {
checkMultiplicity(handler);
8 name = filterName(name, handler);
9 ctx = getContextOrDie(baseName);
10
11 newCtx = newContext(group, name, handler);
12
13 addAfter0(ctx, newCtx); EventExecutor executor = newCtx.executor();
if (!executor.inEventLoop()) {
newCtx.setAddPending();
executor.execute(new Runnable() {
@Override
public void run() {
21 callHandlerAdded0(newCtx);
}
});
return this;
}
}
27 callHandlerAdded0(newCtx);
return this;
}

  第8行,filterName方法,确保handler有一个名字,如果name==null, 生成一个不重复的名字。然后检查是否有重名的,如果用户指定名字重复抛出异常。

  第9行,找到baseName对应的节点,如果没有抛出异常。

  第11行, 创建新的节点,这个节点将持有hanler,同时给这个节点分配一个eventExecutor。

  第13行,添加链表节点的操作。

  第21,27行,调用handler的handlerAdded方法,如果捕捉到异常,从链表中删除这个刚刚添加的节点,然后调用handler的handlerRemoved方法, 调用fireExceptionCaught方法触发异常事件。

  其它几个添加方法几个add方法和addAfter大致相同。addBefore是把addAfter0变成了addBefore0。addFirst中没有getContextOrDie调用,把addAfter0替换陈addFirst0。addLast在addFirst的基础上把addFirst0替换成addLast0。

  名字是维护链表节点的一个重要因素,DefaultChannelPipleline需要确保链表中的每个节点的名字都重复,这样它才能通过名字找到一个唯一的节点。用户添加一个handler时,如果由于用户命名不当导致的名字重复,这个handler将会被拒绝添加的链表中。如果用户以匿名方式添加handler,添加之前DefaultChannelPipleline会为这个handler生成一个不重复的名字,这个功能在filterName方法中实现。

 private String filterName(String name, ChannelHandler handler) {
if (name == null) {
return generateName(handler);
}
checkDuplicateName(name);
return name;
}

  generateName方法负责为匿名的handler生成一个名字,checkDuplicateName负责验证用户提供的名字是否重复。名字的生成规则是handler的类型名+"#n",假设你的handler的类型名是com.test.YourClass, 那么生成名字将是YourClass#0, YourClass#1, ..., YourClass#n。

删除链表节点

  所有的remove方法最终都会调用到private AbstractChannelHandlerContext remove(final AbstractChannelHandlerContext ctx)方法.

 private AbstractChannelHandlerContext remove(final AbstractChannelHandlerContext ctx) {
assert ctx != head && ctx != tail; synchronized (this) {
5 remove0(ctx); EventExecutor executor = ctx.executor();
if (!executor.inEventLoop()) {
executor.execute(new Runnable() {
@Override
public void run() {
12 callHandlerRemoved0(ctx);
}
});
return ctx;
}
}
18 callHandlerRemoved0(ctx);
return ctx;
}

  5行,从链表结构中删除handler。

  12,18行, 调用handler的handlerRemoved方法。

链表节点查找

  查找方法get最终都会调用内部的context0方法,这个方法是纯粹的链表操作,比较单纯。

替换链表节点

  所有的replace方法最终都会调用内部的replace方法:

  private ChannelHandler replace(final AbstractChannelHandlerContext ctx, final String newName, ChannelHandler newHandler)

  这个方法代码结构与addAfter相似,不同的是在链表操作上是一个替换操作,之后会先调用被替换handler的handlerRemoved方法,然后调用新handler的handlerAdded方法。

链表操作会handler方法之间的调用关系

链表方法 ChannelHandler方法
addBefore,addAfter,addFirst,addLast handlerAdded  
get
remove,removeFirst,removeLast handleRemoved
replace handleRemoved, handlerAdded

  

netty源码解解析(4.0)-9 ChannelPipleline的默认实现-链表管理的更多相关文章

  1. netty源码解解析(4.0)-10 ChannelPipleline的默认实现--事件传递及处理

    事件触发.传递.处理是DefaultChannelPipleline实现的另一个核心能力.在前面在章节中粗略地讲过了事件的处理流程,本章将会详细地分析其中的所有关键细节.这些关键点包括: 事件触发接口 ...

  2. netty源码解解析(4.0)-11 Channel NIO实现-概览

      结构设计 Channel的NIO实现位于io.netty.channel.nio包和io.netty.channel.socket.nio包中,其中io.netty.channel.nio是抽象实 ...

  3. netty源码解解析(4.0)-17 ChannelHandler: IdleStateHandler实现

    io.netty.handler.timeout.IdleStateHandler功能是监测Channel上read, write或者这两者的空闲状态.当Channel超过了指定的空闲时间时,这个Ha ...

  4. netty源码解解析(4.0)-18 ChannelHandler: codec--编解码框架

    编解码框架和一些常用的实现位于io.netty.handler.codec包中. 编解码框架包含两部分:Byte流和特定类型数据之间的编解码,也叫序列化和反序列化.不类型数据之间的转换. 下图是编解码 ...

  5. netty源码解解析(4.0)-20 ChannelHandler: 自己实现一个自定义协议的服务器和客户端

    本章不会直接分析Netty源码,而是通过使用Netty的能力实现一个自定义协议的服务器和客户端.通过这样的实践,可以更深刻地理解Netty的相关代码,同时可以了解,在设计实现自定义协议的过程中需要解决 ...

  6. netty源码解解析(4.0)-15 Channel NIO实现:写数据

    写数据是NIO Channel实现的另一个比较复杂的功能.每一个channel都有一个outboundBuffer,这是一个输出缓冲区.当调用channel的write方法写数据时,这个数据被一系列C ...

  7. netty源码解解析(4.0)-8 ChannelPipeline的设计

    io.netty.channel.ChannelPipeline   设计原理 上图中,为了更直观地展示事件处理顺序, 故意有规律地放置两种handler的顺序,实际上ChannelInboundHa ...

  8. netty源码解解析(4.0)-14 Channel NIO实现:读取数据

     本章分析Nio Channel的数据读取功能的实现. Channel读取数据需要Channel和ChannelHandler配合使用,netty设计数据读取功能包括三个要素:Channel, Eve ...

  9. netty源码解解析(4.0)-4 线程模型-概览

    netty线程体系概览 netty的高并发能力很大程度上由它的线程模型决定的,netty定义了两种类型的线程: I/O线程: EventLoop, EventLoopGroup.一个EventLoop ...

随机推荐

  1. hp visual user generator

    loadrunder  自动化测试 脚本 用例

  2. [SoapUI] 检查测试步骤的类型或者或者某种特定类型的步骤列表

    SoapUI Groovy : Check if test step is of specific type, such as : Wsdl, Rest, Jdbc, HTTP, Groovy etc ...

  3. 关于session共享

    最近在银行部署项目,一台Nginx做负载均衡,两台Tomcat,两台Oracle互备,一台ftp文件服务器.Tomcat涉及到session共享问题,所以就在这里做一下总结. 首先关于session ...

  4. 第七次spring会议

    昨天我对加密文件进行了解密. 我今天对已完成的代码进行了总体运行,检查运行中出现的bug,在显示便签中出现了过长就无法一次显示完全的情况,没有办法

  5. 简单利用jQuery,让前端开发不再依赖于后端的接口

    前端开发的过程中,我们免不了和后端进行联调,这时候就会出现以下的尴尬场景: 接口没写好,没法做接下来的功能 功能写好了,接口没写好,没法测这个功能 联调了,出了BUG,不知道锅在谁身上,只得陪后端耗时 ...

  6. XML文件的DTD编写

    <?xml version="1.0" encoding="UTF-8" ?> <!--DTD外部引用:--> <!DOCTYPE ...

  7. Python day 4

    阅读目录 内容回顾: 流程控制: if分支结构: while循环控制: for循环(迭代器): ##内容回顾: #1.变量名命名规范 -- 1.只能由数字.字母 及 _ 组成 -- 2.不能以数字开头 ...

  8. 在linux中文件的权限讲解

    1.d:directory(目录): 表示这个文件是个目录,其他的还有f(file文件)等等: 2.r:read(可读) 3.w:write(可写) 4 x :execute(可执行) 一般Linux ...

  9. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十七之铭文升级版

    铭文一级: 功能1:今天到现在为止 实战课程 的访问量 yyyyMMdd courseid 使用数据库来进行存储我们的统计结果 Spark Streaming把统计结果写入到数据库里面 可视化前端根据 ...

  10. Django Model 进阶

    回顾: 定义 models settings.py激活app才能使用models migrations:版本控制,当更改库表结构时可以处理数据 增删改查 常见Field 模型的价值在于定义数据模型,使 ...