题意:给定n棵树,其中有一些已经涂了颜色,然后让你把没有涂色的树涂色使得所有的树能够恰好分成k组,让你求最少的花费是多少。

析:这是一个DP题,dp[i][j][k]表示第 i 棵树涂第 j 种颜色恰好分成 k 组,然后状态转移方程是什么呢?

如果第 i 棵已经涂了,那么要么和第 i-1 棵一组,要么不和第 i-1 棵一组。

如果第 i 棵没有涂,和上面差不多,就是加上要涂的费用,并且要选择最少的。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <list>
#include <sstream>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e2 + 5;
const int mod = 1e9 + 7;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL cor[maxn], w[maxn][maxn];
LL dp[maxn][maxn][maxn]; int main(){
int K;
while(scanf("%d %d %d", &n, &m, &K) == 3){
for(int i = 1; i <= n; ++i) scanf("%I64d", &cor[i]);
for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) scanf("%I64d", &w[i][j]); for(int i = 0; i <= n; ++i) for(int j = 0; j <= m; ++j)
for(int k = 0; k <= K; ++k) dp[i][j][k] = LNF; dp[0][0][0] = 0;
for(int i = 1; i <= n; ++i){
if(cor[i]){
for(int k = 1; k <= K; ++k){
dp[i][cor[i]][k] = Min(dp[i][cor[i]][k], dp[i-1][cor[i]][k]);
for(int j = 0; j <= m; ++j){
if(j != cor[i]) dp[i][cor[i]][k] = Min(dp[i][cor[i]][k], dp[i-1][j][k-1]);
}
}
}
else{
for(int k = 1; k <= K; ++k){
for(int j = 1; j <= m; ++j){
dp[i][j][k] = Min(dp[i][j][k], dp[i-1][j][k] + w[i][j]);
for(int l = 0; l <= m; ++l){
if(l != j) dp[i][j][k] = Min(dp[i][j][k], dp[i-1][l][k-1] + w[i][j]);
}
}
}
}
}
LL ans = LNF;
for(int i = 1; i <= m; ++i) ans = Min(ans, dp[n][i][K]);
if(ans == LNF) ans = -1;
cout << ans << endl;
}
return 0;
}

CodeForces 711C Coloring Trees (DP)的更多相关文章

  1. Codeforces 677C. Coloring Trees dp

    C. Coloring Trees time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  2. codeforces 711C Coloring Trees(DP)

    题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...

  3. 【动态规划】Codeforces 711C Coloring Trees

    题目链接: http://codeforces.com/problemset/problem/711/C 题目大意: 给N棵树,M种颜色,已经有颜色的不能涂色,没颜色为0,可以涂色,每棵树I涂成颜色J ...

  4. CodeForces 711C Coloring Trees

    简单$dp$. $dp[i][j][k]$表示:前$i$个位置染完色,第$i$个位置染的是$j$这种颜色,前$i$个位置分成了$k$组的最小花费.总复杂度$O({n^4})$. #pragma com ...

  5. codeforces 711C C. Coloring Trees(dp)

    题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

  7. CodeForces #369 C. Coloring Trees DP

    题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少.   K:连续的颜色为一组 ...

  8. C. Coloring Trees DP

    传送门:http://codeforces.com/problemset/problem/711/C 题目: C. Coloring Trees time limit per test 2 secon ...

  9. Code Forces 711C Coloring Trees

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

随机推荐

  1. 决策树之 CART

    继上篇文章决策树之 ID3 与 C4.5,本文继续讨论另一种二分决策树 Classification And Regression Tree,CART 是 Breiman 等人在 1984 年提出的, ...

  2. zoj 3690 Choosing number

    题意    就是说给你 N 个人站成一排,现在每个人都可以选择 1-M 中间的任意一个数字,相邻的两个人数字相同,则他必须是是 >  K 的  问方案总数: 方法    先求出递推式,然后用矩阵 ...

  3. Heritrix源码分析(十二) Heritrix的控制中心(大脑)CrawlController(一)(转)

    本博客属原创文章,欢迎转载!转载请务必注明出处:http://guoyunsky.iteye.com/blog/650694 本博客已迁移到本人独立博客: http://www.yun5u.com/ ...

  4. StringUtils判断字符串是否为空的方法

    public static boolean isEmpty(String str)   判断某字符串是否为空,为空的标准是 str==null 或 str.length()==0   下面是 Stri ...

  5. 在Android中使用并发来提高速度和性能

    Android框架提供了很实用的异步处理类.然而它们中的大多数在一个单一的后台线程中排队.当你需要多个线程时你是怎么做的? 众所周知,UI更新发生在UI线程(也称为主线程).在主线程中的任何操作都会阻 ...

  6. MVC-READ5(asp.net web from PK asp.net MVC)

    webform: ViewState问题 页面生命周期 不能很好的分解关注点 对HTML操控受限 抽象不完全 可测试性弱

  7. Cocoa Foundation框架学习笔记 - NSCalendar

    + (void)beginTest { /* FOUNDATION_EXPORT NSString * const NSGregorianCalendar; //公历(常用) FOUNDATION_E ...

  8. jQuery对select标签的常用操作

    1.获取当前选中项的value. $("#selector").val(); 2.获取当前选中项的text. $("#selector").find(" ...

  9. STL六大组件之——适配器代表大会

    适配器也是一种常用的设计模式: 将一个类的接口转换为另一个类的接口,使得原本因接口不兼容而不能合作的两个类可以一起运作.STL提供三种适配器:改变容器接口的容器适配器.改变迭代器接口的迭代器适配器以及 ...

  10. 游戏BI,起步了。

    思索许久,终于决定自己的发展将会是游戏的BI. 即说即做,本文是我未来BI工作的开端. 传统的游戏BI,只是将运营的工作数据化,流量的变现指标化.和网站类似,无外乎用户导入,流失,保有,付费,回访等等 ...