题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=1212

Train Problem II

Description

As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway.

Input

The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file.

Output

For each test case, you should output how many ways that all the trains can get out of the railway.

SampleInput

1
2
3
10

SampleOutput

1
2
5
16796

卡特兰数。。

$ f(n) = f(n-1)*(n*4-2)/(n-1)$

 #include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<cstdio>
#include<vector>
#include<string>
#include<map>
#include<set>
using std::cin;
using std::max;
using std::cout;
using std::endl;
using std::string;
using std::istream;
using std::ostream;
#define sz(c) (int)(c).size()
#define all(c) (c).begin(), (c).end()
#define iter(c) decltype((c).begin())
#define cls(arr,val) memset(arr,val,sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, j, n) for (int i = j; i < (int)(n); i++)
#define fork(i, k, n) for (int i = (int)k; i <= (int)n; i++)
#define tr(c, i) for (iter(c) i = (c).begin(); i != (c).end(); ++i)
#define pb(e) push_back(e)
#define mp(a, b) make_pair(a, b)
struct BigN {
typedef unsigned long long ull;
static const int Max_N = ;
int len, data[Max_N];
BigN() { memset(data, , sizeof(data)), len = ; }
BigN(const int num) {
memset(data, , sizeof(data));
*this = num;
}
BigN(const char *num) {
memset(data, , sizeof(data));
*this = num;
}
void clear() { len = , memset(data, , sizeof(data)); }
BigN& clean(){ while (len > && !data[len - ]) len--; return *this; }
string str() const {
string res = "";
for (int i = len - ; ~i; i--) res += (char)(data[i] + '');
if (res == "") res = "";
res.reserve();
return res;
}
BigN operator = (const int num) {
int j = , i = num;
do data[j++] = i % ; while (i /= );
len = j;
return *this;
}
BigN operator = (const char *num) {
len = strlen(num);
for (int i = ; i < len; i++) data[i] = num[len - i - ] - '';
return *this;
}
BigN operator + (const BigN &x) const {
BigN res;
int n = max(len, x.len) + ;
for (int i = , g = ; i < n; i++) {
int c = data[i] + x.data[i] + g;
res.data[res.len++] = c % ;
g = c / ;
}
return res.clean();
}
BigN operator * (const BigN &x) const {
BigN res;
int n = x.len;
res.len = n + len;
for (int i = ; i < len; i++) {
for (int j = , g = ; j < n; j++) {
res.data[i + j] += data[i] * x.data[j];
}
}
for (int i = ; i < res.len - ; i++) {
res.data[i + ] += res.data[i] / ;
res.data[i] %= ;
}
return res.clean();
}
BigN operator * (const int num) const {
BigN res;
res.len = len + ;
for (int i = , g = ; i < len; i++) res.data[i] *= num;
for (int i = ; i < res.len - ; i++) {
res.data[i + ] += res.data[i] / ;
res.data[i] %= ;
}
return res.clean();
}
BigN operator - (const BigN &x) const {
assert(x <= *this);
BigN res;
for (int i = , g = ; i < len; i++) {
int c = data[i] - g;
if (i < x.len) c -= x.data[i];
if (c >= ) g = ;
else g = , c += ;
res.data[res.len++] = c;
}
return res.clean();
}
BigN operator / (const BigN &x) const {
BigN res, f = ;
for (int i = len - ; ~i; i--) {
f *= ;
f.data[] = data[i];
while (f >= x) {
f -= x;
res.data[i]++;
}
}
res.len = len;
return res.clean();
}
BigN operator % (const BigN &x) {
BigN res = *this / x;
res = *this - res * x;
return res;
}
BigN operator += (const BigN &x) { return *this = *this + x; }
BigN operator *= (const BigN &x) { return *this = *this * x; }
BigN operator -= (const BigN &x) { return *this = *this - x; }
BigN operator /= (const BigN &x) { return *this = *this / x; }
BigN operator %= (const BigN &x) { return *this = *this % x; }
bool operator < (const BigN &x) const {
if (len != x.len) return len < x.len;
for (int i = len - ; ~i; i--) {
if (data[i] != x.data[i]) return data[i] < x.data[i];
}
return false;
}
bool operator >(const BigN &x) const { return x < *this; }
bool operator<=(const BigN &x) const { return !(x < *this); }
bool operator>=(const BigN &x) const { return !(*this < x); }
bool operator!=(const BigN &x) const { return x < *this || *this < x; }
bool operator==(const BigN &x) const { return !(x < *this) && !(x > *this); }
friend istream& operator >> (istream &in, BigN &x) {
string src;
in >> src;
x = src.c_str();
return in;
}
friend ostream& operator << (ostream &out, const BigN &x) {
out << x.str();
return out;
}
}A[], B;
inline void init() {
A[] = ;
rep(i, , ) {
B = * i - ;
A[i] = A[i - ] * B / (i + );
B.clear();
}
}
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
init();
std::ios::sync_with_stdio(false);
int n;
while (cin >> n) cout << A[n] << endl;
return ;
}

hdu 1023 Train Problem II的更多相关文章

  1. HDU 1023 Train Problem II (大数卡特兰数)

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. HDU 1023 Train Problem II (卡特兰数,经典)

    题意: 给出一个数字n,假设火车从1~n的顺序分别进站,求有多少种出站序列. 思路: 卡特兰数的经典例子.n<101,用递推式解决.需要使用到大数.n=100时大概有200位以下. #inclu ...

  3. HDU 1023 Train Problem II 大数打表Catalan数

    一个出栈有多少种顺序的问题.一般都知道是Catalan数了. 问题是这个Catalan数非常大,故此须要使用高精度计算. 并且打表会速度快非常多.打表公式要熟记: Catalan数公式 Cn=C(2n ...

  4. HDU 1023 Train Problem II( 大数卡特兰 )

    链接:传送门 题意:裸卡特兰数,但是必须用大数做 balabala:上交高精度模板题,增加一下熟悉度 /************************************************ ...

  5. 1023 Train Problem II(卡特兰数)

    Problem Description As we all know the Train Problem I, the boss of the Ignatius Train Station want ...

  6. HDOJ 1023 Train Problem II

    考虑第1个火车出站的时刻,从1到n都有可能,如果它是第i个出栈,那么前面有规模为i-1的子问题,后面有规模为n-i的子问题.累加.

  7. HDOJ 1023 Train Problem II 卡特兰数

    火车进站出站的问题满足卡特兰数...卡特兰数的相关知识如下: 卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. ...

  8. Train Problem II(卡特兰数 组合数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1023 Train Problem II Time Limit: 2000/1000 MS (Java/ ...

  9. HDU——1023 Train Problem II

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. 慕课网-安卓工程师初养成-2-10 Java中的强制类型转换

    来源:http://www.imooc.com/code/1241 相信小伙伴们也发现了,尽管自动类型转换是很方便的,但并不能满足所有的编程需要. 例如,当程序中需要将 double 型变量的值赋给一 ...

  2. c# 获取excel所有工作表

    var filePath="f:\xx.xlsx" string connStr = "Provider=Microsoft.Ace.OleDb.12.0;" ...

  3. PagedList.MVC分页

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...

  4. Windows Server 2012下安装Hyper-V虚拟机

    Windows Server 2012下安装Hyper-V虚拟机 Win server 2012系统中Hyper-V 性能进一步提高,广大爱好者都尝试体验它,可是有不少朋友无法正确安装虚拟机,尽管在网 ...

  5. 深入了解Qt(二)之元对象系统(Meta-Object System)

    深入了解Qt主要内容来源于Inside Qt系列,本文做了部分删改,以便于理解.在此向原作者表示感谢! 在Qt Meta Object System-元对象系统这篇文章中,从底层实现的源码剖析了元对象 ...

  6. Linux下的多进程编程

    1.进程 1.1进程的定义 <计算机操作系统>这门课对进程有这样的描述:进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统 ...

  7. 1028 C语言文法

    <程序> ->  <外部声明> |  <程序>  <外部声明> <外部声明>  ->   <函数定义>  |  &l ...

  8. AJAX验证用户是否存在

    <html> <head> <title> ajax验证 </title> </head> <body> <input t ...

  9. Error Domain=kCLErrorDomain Code=0 "The operation couldn’t be completed.

    地图定位 错误:使用CoreLocation获取地理位置信息,报错 Error Domain=kCLErrorDomain Code=0 "The operation couldn’t be ...

  10. js随机生成字母数字组合的字符串 随机动画数字

    效果描述: 附件中只有一个index.html文件有效 其中包含css以及html两部分内容 纯js生成的几个随机数字 每次都不重复,点击按钮后再次切换 使用方法: 1.将css样式引入到你的网页中 ...