Problem Link:

http://oj.leetcode.com/problems/palindrome-partitioning/

We solve this problem using Dynamic Programming. The problem holds the property of optimal sub-strcuture. Assume S is a string that can be partitioned into palindromes w1, ..., wn. Then, we have a sub-string of S, S' = w1 + w2 + ... + wn-1, also can be partitioned into palindromes.

Let B[0..n-1] be an array, where B[i] is a list of valid breaks such that for a break position j s[0..i] = s[0..j-1] + s[j..i] where s[j..i] is a palindrome. Therefore, we have the recursive formula:

B[i] = [0] for s[0..i] is a palindrome

B[i] += { j | s[0..j-1] can be partitioned into palindromes and s[j..i] is a palindrome, j =1, ..., i }

To check if s[j..i] is a palindrome in O(1) time, we ultilize a 2D array to keep track of whether s[j..i] is palindrome or not. It takes O(n2) space and O(n2) time to compute each P[j][i].

To find all possible breaks, we start from the end of the string. All possible "last break" are in B[n-1], if B[n-1] is empty then there is no possible squence of breaks. If x in B[n-1], then we continue to find all possible breaks for string s[0..B[n-1]-1] and add the x to the end of all possible sequences of breaks. This process will continue recursively until all possible sequences have 0 as the first break.

The following code is the python code accepted by oj.leetcode.com.

class Solution:
# @param s, a string
# @return a list of lists of string
def partition(self, s):
"""
Input: a string s[0..n-1], where n = len(s) DP solution: use an array B[0..n-1]
B[i] presents a list of break positions for string s[0..i].
In the list B[i], each break position j (0 < j < i) means
s[0..i] = s[0..j-1] + s[j..i] where s[0..j] can be partitioned
into palindromes and s[j+1..i] is a palindrome.
Note that B[i]=[] means s[0..i] cannot be partitioned into palindromes,
and 0 in B[i] means s[0..i] is a palindrome. Additional we may need a 2D boolean array P[0..n-1][0..n-1] to tell if s[i..j-1] is a palindromes
"""
n = len(s)
# Special case: s is ""
if n == 0:
return [] # P[i][j] denotes whether s[i..j] is a palindrome
P = []
for _ in xrange(n):
P.append([False]*n)
# Compute P[][], T(n) = O(n^2) and S(n) = O(n^2)
for mid in xrange(n):
P[mid][mid] = True
# Check strings with the mid of s[mid]
i = mid - 1
j = mid + 1
while i >= 0 and j < n and s[i] == s[j]:
P[i][j] = True
i -= 1
j += 1
# Check strings with mid "s[mid]s[mid+1]"
i = mid
j = mid + 1
while i >= 0 and j < n and s[i] == s[j]:
P[i][j] = True
i -= 1
j += 1 # Compute B[]
B = [None] * n
for i in xrange(0, n):
if P[0][i]:
B[i] = [0]
else:
B[i] = []
# s[0 .. i] = s[0 .. j-1] + s[j .. i]
j = 1
while j <= i:
if B[j-1] != [] and P[j][i]:
B[i].append(j)
j += 1 # BFS in the graph
res = []
# Last breaks
breaks = [ [x, n] for x in B[n-1] ]
while breaks:
temp = []
for lst in breaks:
if lst[0] == 0:
res.append([ s[lst[i]:lst[i+1]] for i in xrange(len(lst)-1) ])
else:
# s[0..i] = s[0..j-1] + s[j..i]
for j in B[lst[0]-1]:
temp.append([j]+lst)
breaks = temp
return res

【LeetCode OJ】Palindrome Partitioning的更多相关文章

  1. 【LeetCode OJ】Palindrome Partitioning II

    Problem Link: http://oj.leetcode.com/problems/palindrome-partitioning-ii/ We solve this problem by u ...

  2. 【LeetCode OJ】Interleaving String

    Problem Link: http://oj.leetcode.com/problems/interleaving-string/ Given s1, s2, s3, find whether s3 ...

  3. 【LeetCode OJ】Reverse Words in a String

    Problem link: http://oj.leetcode.com/problems/reverse-words-in-a-string/ Given an input string, reve ...

  4. LeetCode OJ:Palindrome Partitioning(回文排列)

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  5. 【LeetCode OJ】Valid Palindrome

    Problem Link: http://oj.leetcode.com/problems/valid-palindrome/ The following two conditions would s ...

  6. 【LeetCode OJ】Validate Binary Search Tree

    Problem Link: https://oj.leetcode.com/problems/validate-binary-search-tree/ We inorder-traverse the ...

  7. 【LeetCode OJ】Recover Binary Search Tree

    Problem Link: https://oj.leetcode.com/problems/recover-binary-search-tree/ We know that the inorder ...

  8. 【LeetCode OJ】Same Tree

    Problem Link: https://oj.leetcode.com/problems/same-tree/ The following recursive version is accepte ...

  9. 【LeetCode OJ】Symmetric Tree

    Problem Link: https://oj.leetcode.com/problems/symmetric-tree/ To solve the problem, we can traverse ...

随机推荐

  1. isDebugEnabled作用

       早上写了日志级别,然后想起在使用的时候经常用isDebugEnabled,一鼓作气.彻底弄懂它: 现象 if (logger.isDebugEnabled()) { logger.debug(m ...

  2. ZigZag Conversion [LeetCode]

    The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...

  3. css清除浮动的处理方法

    根据<精彩绝伦的css> <!DOCTYPE html> <html> <head> <meta charset="utf-8" ...

  4. Go语言并发与并行学习笔记(二)

    转:http://blog.csdn.net/kjfcpua/article/details/18265461 Go语言的并发和并行 不知道你有没有注意到一个现象,还是这段代码,如果我跑在两个goro ...

  5. 让你的WPF程序使用多线程——BackgroundWorker

    在wpf中可以使用许多方法执行异步操作.利用.NET的芳芳就是手动创建一个新的System.Threading.Thread对象,提供一步代码,并使用THread.Start()方法加载代码.这种方法 ...

  6. Oracle中any和all的区别用法

    对于any,all的用法,书中说的比较绕口,难以理解,如果通过举例就会比较清晰. any的例子: select * from t_hq_ryxx where gongz > any (selec ...

  7. PowerMock遇到的问题——4

    当我们在测试一个方法的构造方法的时候,有的时候内部需要new一些对象,这是就需要用到PowerMock.exceptNew(),这个方法,但有时候传的参数有关键字this,比如SAPPublisher ...

  8. c# datagridview按条件搜索查询过滤

    DataView的RowFilter 实现过滤 根据文本框文字对datagridview的数据进行模糊查询, 其实也就是一个过滤 string qymc = textBox1.Text.ToStrin ...

  9. const的全面理解

    const关键字用来作甚?const是一个类型修饰符.常见的类型修饰符有哪些? short long unsigned signed static autoextern register 定义一个变量 ...

  10. VC单文档对话框添加托盘图标

    一 单文档添加托盘 1. 在CMainFrame中定义NOTIFYICONDATA结构m_notify 2.在OnCreate中添加托盘初始化代码 int CMainFrame::OnCreate(L ...