Inferring Analogous Attributes     CVPR  2014

Chao-Yeh Chen and Kristen Grauman

Abstract:

The appearance of an attribute can vary considerably from class to class (e.g., a “fluffy” dog vs. a “fluffy” towel), making standard class-independent attribute models break down. Yet, training object-specific models for each attribute can be impractical, and defeats the purpose of using attributes to bridge category boundaries. We propose a novel form of transfer learning that addresses this dilemma. We develop a tensor factorization approach which, given a sparse set of class-specific attribute classifiers, can infer new ones for object-attribute pairs unobserved during training. For example, even though the system has no labeled images of striped dogs, it can use its knowledge of other attributes and objects to tailor “stripedness” to the dog category. With two large-scale datasets, we demonstrate both the need for category-sensitive attributes as well as our method’s successful transfer. Our inferred attribute classifiers perform similarly well to those trained with the luxury of labeled class-specific instances, and much better than those restricted to traditional modes of transfer.

从上图可以看出,通过学习一些特定目标的属性分类器,我们可以类推出相似的属性分类器.该分类器是对目标敏感的,虽然没有特定种类的带标签的训练图像.

1.Introduction:

本文的核心贡献有3点:

1.First, performing transfer jointly in the space of two labeled aspects of the data—namely, categories and attributes—is new. Critically, this means our method is not confined to transfer along same-object or same-attribute boundaries; rather, it discovers analogical relationships based on some mixture of previously seen objects and attributes.

第一点,就是与传统的转移学习不同,本文的转移是联合的转移,即:目标种类和属性的转移.

2.Second, our approach produces a discriminative model for an attribute with zero training examples from that category.

第二点,就是产生一种判别性的模型,尽管该类属性没有训练样本.

3.Third, while prior methods often require information about which classes should transfer to which [2, 29, 26, 1] (e.g., that a motorcycle detector might transfer well to a bicycle), our approach naturally discovers where transfer is possible based on how the observed attribute models relate. It can transfer easily between multiple classes at once, not only pairs, and we avoid the guesswork of manually specifying where transfer is likely.

第三点,就是本文所提出的方法不需要关于什么转移到什么的信息.而可以在多种类别之间很方便的转移.

2. Related Work

In contrast, our approach implicitly discovers analogical relationships among object-sensitive attribute classifiers, and our goal is to generate
novel category-sensitive attribute classifiers.

3. Approach

Given training images labeled by their category and one or more attributes, our method produces as output a series of category-sensitive attribute classifiers. Some of those classifiers are explicitly trained with the labeled data, while the rest are inferred by our method. We show how to create these analogous attribute classifiers via tensor completion.

In the following, we first describe how we train category-sensitive classifiers (Sec. 3.1). Then we define the tensor of attributes (Sec. 3.2) and show how we use it to infer analogous models (Sec. 3.3). Finally, we discuss certain salient aspects of the method design (Sec. 3.4).

3.1. Learning Category-Sensitive Attributes

在现有的系统当中,属性的训练是通过一种种类之间相互独立的方式 ( in a category-independent manner )进行.

在这个工作中,我们挑战传统的训练方式,即:in a completely category-indenpent mannner.

while attributes’ visual cues are often shared among some objects, the sharing is not universal. It can dilute(稀释) the learning process to pool cross-category exemplars indiscriminately. (在某些物体中,属性的视觉线索通常是共享的,但是这种共享不是普遍的.能够非判别性的稀释学习过程来集中跨种类的样本).

一种比较 naive 的做法就是,instead train category-sensitive attributes would be to partition training exemplars by their category labels, and train one attribute per category. 当有足够的 attribute + object combinations 的带标签的样本时,这种策略可能是足够的.但是,初步实验证明该方法是次于训练单个普遍的属性.我们归结了两点原因:

1.even in large-scale collections, the long-tailed distribution of object/scene/attribute occurrences in the real world means that some label pairs will be undersampled, leaving inadequate exemplars to build a statistically sound model,

2.this naive approach completely ignores attributes’ inter-class semantic ties. 属性类别之间的语意连接.

To overcome these shortcomings, we instead use an importance-weighted support vector machine (SVM) to train each category-sensitive attribute. 每一个训练样本(xi, yi)都包括一个图像描述xi,和标签yi 属于{-1, +1}.

论文阅读之 Inferring Analogous Attributes CVPR 2014的更多相关文章

  1. 目标检测--Rich feature hierarchies for accurate object detection and semantic segmentation(CVPR 2014)

    Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick J ...

  2. 目标检测--Scalable Object Detection using Deep Neural Networks(CVPR 2014)

    Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander ...

  3. 从CVPR 2014看计算机视觉领域的最新热点

    编者按:2014年度计算机视觉方向的顶级会议CVPR上月落下帷幕.在这次大会中,微软亚洲研究院共有15篇论文入选.今年的CVPR上有哪些让人眼前一亮的研究,又反映出哪些趋势?来听赴美参加会议的微软亚洲 ...

  4. 从CVPR 2014看计算机视觉领域的最新热点

    2014看计算机视觉领域的最新热点" title="从CVPR 2014看计算机视觉领域的最新热点"> 编者按:2014年度计算机视觉方向的顶级会议CVPR上月落下 ...

  5. 论文阅读(Xiang Bai——【arXiv2016】Scene Text Detection via Holistic, Multi-Channel Prediction)

    Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新 ...

  6. DeconvNet 论文阅读理解

    学习语义分割反卷积网络DeconvNet 一点想法:反卷积网络就是基于FCN改进了上采样层,用到了反池化和反卷积操作,参数量2亿多,非常大,segnet把两个全连接层去掉,效果也能很好,显著减少了参数 ...

  7. 论文阅读笔记四十四:RetinaNet:Focal Loss for Dense Object Detection(ICCV2017)

    论文原址:https://arxiv.org/abs/1708.02002 github代码:https://github.com/fizyr/keras-retinanet 摘要 目前,具有较高准确 ...

  8. 论文阅读:Review of Visual Saliency Detection with Comprehensive Information

    这篇文章目前发表在arxiv,日期:20180309. 这是一篇针对多种综合性信息的视觉显著性检测的综述文章. 注:有些名词直接贴原文,是因为不翻译更容易理解.也不会逐字逐句都翻译,重要的肯定不会错过 ...

  9. 论文阅读笔记三十七:Grid R-CNN(CVPR2018)

    论文源址:https://arxiv.org/abs/1811.12030 开源代码:未公开 摘要 本文提出了目标检测网络Grid R-CNN,其基于网格定位机制实现准确的目标检测.传统方法主要基于回 ...

随机推荐

  1. 使用GoldenGate进行平台迁移和数据库升级(9i->11g)步骤描述

    在一个场景中,需要从Solaris SPARC将数据库迁移到Linux X86-64,同时,数据库版本从原有的oracle 9i(9.2.0.5)升级到11g(11.2.0.4)使用OGG的数据同步功 ...

  2. 关于高并发的aotomic

    AtomicInteger线程安全的根源,熟悉并发的同学一定知道在java中处理并发主要有两种方式: 1,synchronized关键字,这个大家应当都各种面试和笔试中经常遇到. 2,volatile ...

  3. linux 杀死进程的方法

    # kill -pid 注释:标准的kill命令通常都能达到目的.终止有问题的进程,并把进程的资源释放给系统.然而,如果进程启动了子进程,只杀死父进程,子进程仍在运行,因此仍消耗资源.为了防止这些所谓 ...

  4. 深入理解SELinux

      目录(?)[+]   1. 简介 SELinux带给Linux的主要价值是:提供了一个灵活的,可配置的MAC机制. Security-Enhanced Linux (SELinux)由以下两部分组 ...

  5. hdoj-2021

    #include "stdio.h"void calculate(int number,int &a,int &b,int &c,int &d,in ...

  6. return, exit, _exit的区别

    return是返回的最常用的方式 _exit属于POSIX定义的系统调用 exit是GLIBC封装之后的函数 1 _exit和exit都会导致整个进程退出,清理进程所占用的资源,但是glibc封装ex ...

  7. IOS聊天对话界面

    大家好,百忙之中,抽出点空,写个微博,话说好久没写. 最近项目中有碰到写类似微信聊天界面上的效果,特整理了一下,写了一个小的Demo,希望给没头绪的同学们一个参考! 下载地址:http://files ...

  8. HTML的表单

    HTML表单 <!-- <form></form>标签对用来创建一个表单,即定义表单的开始和结束位置,<form>表单具有下面等属性 1.action属性用来 ...

  9. .NET的语法优化

    1.多参数 判断 条件 //判断 var fileKey = new { DateStart = search.DateStart.IsNull(), //关开始时间 DateEnd = search ...

  10. Net作业调度-----Quartz.Net

    一:业务需求: 项目需要在不同时刻,执行一个或很多个不同的作业. Windows执行计划这时并不能很好的满足需求了,迫切需要一个更为强大,方便管理,集群部署的作业调度框架. 二:介绍 Quartz一个 ...