7. SVM松弛变量
我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。
看下面两张图:
可以看到一个离群点(可能是噪声)可以造成超平面的移动,间隔缩小,可见以前的模型对噪声非常敏感。再有甚者,如果离群点在另外一个类中,那么这时候就是线性不可分了。
这时候我们应该允许一些点游离并在在模型中违背限制条件(函数间隔大于1)。我们设计得到新的模型如下(也称软间隔):
引入非负参数后(称为松弛变量),就允许某些样本点的函数间隔小于1,即在最大间隔区间里面,或者函数间隔是负数,即样本点在对方的区域中。而放松限制条件后,我们需要重新调整目标函数,以对离群点进行处罚,目标函数后面加上的就表示离群点越多,目标函数值越大,而我们要求的是尽可能小的目标函数值。
这里的C是离群点的权重,C越大表明离群点对目标函数影响越大,也就是越不希望看到离群点。我们看到,目标函数控制了离群点的数目和程度,使大部分样本点仍然遵守限制条件。
引入松弛变量(惩罚因子)后,有一种很常用的变形可以用来解决分类问题中样本的“偏斜”问题。
先来说说样本的偏斜问题,也叫数据集偏斜(unbalanced),它指的是参与分类的两个类别(也可以指多个类别)样本数量差异很大。比如说正类有10000个样本,而负类只给了100个,这会引起的问题显而易见,可以看看下面的图:
方形的点是负类。,,是根据给的样本算出来的分类面,由于负类的样本很少很少,所以有一些本来是负类的样本点没有提供,比如图中两个灰色的方形点,如果这两个点有提供的话,那算出来的分类面应该是,和,他们显然和之前的结果有出入,实际上负类给的样本点越多,就越容易出现在灰色点附近的点,我们算出的结果也就越接近于真实的分类面。但现在由于偏斜的现象存在,使得数量多的正类可以把分类面向负类的方向“推”,因而影响了结果的准确性。
对付数据集偏斜问题的方法之一就是在惩罚因子上作文章,那就是给样本数量少的负类更大的惩罚因子,表示我们重视这部分样本,因此我们的目标函数中因松弛变量而损失的部分就变成了:
其中是正样本,是负样本。libSVM这个算法包在解决偏斜问题的时候用的就是这种方法。
那和怎么确定呢?它们的大小是试出来的(参数调优),但是他们的比例可以有些方法来确定。咱们先假定说是5,那确定的一个很直观的方法就是使用两类样本数的比来算,对应到刚才举的例子,就可以定为500(因为10,000:100=100:1)。
但是这样并不够好,回看刚才的图,你会发现正类之所以可以“欺负”负类,其实并不是因为负类样本少,真实的原因是负类的样本分布的不够广(没扩充到负类本应该有的区域)。所以给和确定比例更好的方法应该是衡量他们分布的程度。比如可以算算他们在空间中占据了多大的体积,例如给负类找一个超球——就是高维空间里的球啦——它可以包含所有负类的样本,再给正类找一个,比比两个球的半径,就可以大致确定分布的情况。显然半径大的分布就比较广,就给小一点的惩罚因子。
但是这样还不够好,因为有的类别样本确实很集中,这不是提供的样本数量多少的问题,这是类别本身的特征,这个时候即便超球的半径差异很大,也不应该赋予两个类别不同的惩罚因子。这样应该怎么解决呢……实际中,完美的方法是没有的,只要根据需要,选择实现简单又合用的就好了。
7. SVM松弛变量的更多相关文章
- 数据集偏斜 - class skew problem - 以SVM松弛变量为例
原文 接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C.回头看一眼引入了松弛变量以后的优化问题: 注意其中C的位置,也可以回想一下C所起的 ...
- SVM松弛变量-记录毕业论文3
上一篇博客讨论了高维映射和核函数,也通过例子说明了将特征向量映射到高维空间中可以使其线性可分.然而,很多情况下的高维映射并不能保证线性可分,这时就可以通过加入松弛变量放松约束条件.同样这次的记录仍然通 ...
- SVM学习笔记
一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...
- Relation Extraction中SVM分类样例unbalance data问题解决 -松弛变量与惩罚因子
转载自:http://blog.csdn.net/yangliuy/article/details/8152390 1.问题描述 做关系抽取就是要从产品评论中抽取出描述产品特征项的target短语以及 ...
- SVM学习(五):松弛变量与惩罚因子
https://blog.csdn.net/qll125596718/article/details/6910921 1.松弛变量 现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而 ...
- SVM学习(续)核函数 & 松弛变量和惩罚因子
SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenan ...
- 1. SVM简介
从这一部分开始,将陆续介绍SVM的相关知识,主要是整理以前学习的一些笔记内容,梳理思路,形成一套SVM的学习体系. 支持向量机(Support Vector Machine)是Cortes和Vapni ...
- 【十大经典数据挖掘算法】SVM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...
- 机器学习实战笔记(Python实现)-05-支持向量机(SVM)
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
随机推荐
- socket读写返回值的处理
在调用socket读写函数read(),write()时,都会有返回值.如果没有正确处理返回值,就可能引入一些问题 总结了以下几点 1当read()或者write()函数返回值大于0时,表示实际从缓冲 ...
- Android中手机录屏并转换GIF的两种方式
之前在博文中为了更好的给大家演示APP的实现效果,本人了解学习了几种给手机录屏的方法,今天就给大家介绍两种我个人用的比较舒服的两种方法: (1)配置adb环境后,使用cmd命令将手机界面操作演示存为视 ...
- react-redux
1. 首先redux,与react是两个独立的个体,项目中可以只用react,也可以只用redux 1.1 react-redux: 是一个redux作者专门为react制作的 redux, 增加了新 ...
- MVC如何使用开源分页插件shenniu.pager.js
最近比较忙,前期忙公司手机端接口项目,各种开发+调试+发布现在几乎上线无问题了:虽然公司项目忙不过在期间抽空做了两件个人觉得有意义的事情,一者使用aspnetcore开发了个人线上项目(要说线上其实只 ...
- 快递Api接口 & 微信公众号开发流程
之前的文章,已经分析过快递Api接口可能被使用的需求及场景:今天呢,简单给大家介绍一下微信公众号中怎么来使用快递Api接口,来完成我们的需求和业务场景. 开发语言:Nodejs,其中用到了Neo4j图 ...
- 《LoadRunner12七天速成宝典》签售会2016-12-17北京
报名地址: http://www.after615.com/actives/s?id=3141&time=1480042829608&sign=9ac8e25e9ab3cf57f613 ...
- C#日志
参考页面: http://www.yuanjiaocheng.net/Entity/first.html http://www.yuanjiaocheng.net/Entity/jieshao.htm ...
- 通过自定义特性,使用EF6拦截器完成创建人、创建时间、更新人、更新时间的统一赋值(使用数据库服务器时间赋值,接上一篇)
目录: 前言 设计(完成扩展) 实现效果 扩展设计方案 扩展后代码结构 集思广益(问题) 前言: 在上一篇文章我写了如何重建IDbCommandTreeInterceptor来实现创建人.创建时间.更 ...
- 数塔问题(DP算法)自底向上计算最大值
Input 输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数 ...
- Johnson 全源最短路径算法
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...