我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。

看下面两张图:

可以看到一个离群点(可能是噪声)可以造成超平面的移动,间隔缩小,可见以前的模型对噪声非常敏感。再有甚者,如果离群点在另外一个类中,那么这时候就是线性不可分了。

这时候我们应该允许一些点游离并在在模型中违背限制条件(函数间隔大于1)。我们设计得到新的模型如下(也称软间隔):

引入非负参数后(称为松弛变量),就允许某些样本点的函数间隔小于1,即在最大间隔区间里面,或者函数间隔是负数,即样本点在对方的区域中。而放松限制条件后,我们需要重新调整目标函数,以对离群点进行处罚,目标函数后面加上的就表示离群点越多,目标函数值越大,而我们要求的是尽可能小的目标函数值。

这里的C是离群点的权重,C越大表明离群点对目标函数影响越大,也就是越不希望看到离群点。我们看到,目标函数控制了离群点的数目和程度,使大部分样本点仍然遵守限制条件。

引入松弛变量(惩罚因子)后,有一种很常用的变形可以用来解决分类问题中样本的“偏斜”问题。

先来说说样本的偏斜问题,也叫数据集偏斜(unbalanced),它指的是参与分类的两个类别(也可以指多个类别)样本数量差异很大。比如说正类有10000个样本,而负类只给了100个,这会引起的问题显而易见,可以看看下面的图:

方形的点是负类。是根据给的样本算出来的分类面,由于负类的样本很少很少,所以有一些本来是负类的样本点没有提供,比如图中两个灰色的方形点,如果这两个点有提供的话,那算出来的分类面应该是,他们显然和之前的结果有出入,实际上负类给的样本点越多,就越容易出现在灰色点附近的点,我们算出的结果也就越接近于真实的分类面。但现在由于偏斜的现象存在,使得数量多的正类可以把分类面向负类的方向“推”,因而影响了结果的准确性。

对付数据集偏斜问题的方法之一就是在惩罚因子上作文章,那就是给样本数量少的负类更大的惩罚因子,表示我们重视这部分样本,因此我们的目标函数中因松弛变量而损失的部分就变成了:

其中是正样本,是负样本。libSVM这个算法包在解决偏斜问题的时候用的就是这种方法。

怎么确定呢?它们的大小是试出来的(参数调优),但是他们的比例可以有些方法来确定。咱们先假定说是5,那确定的一个很直观的方法就是使用两类样本数的比来算,对应到刚才举的例子,就可以定为500(因为10,000:100=100:1)。

但是这样并不够好,回看刚才的图,你会发现正类之所以可以“欺负”负类,其实并不是因为负类样本少,真实的原因是负类的样本分布的不够广(没扩充到负类本应该有的区域)。所以给确定比例更好的方法应该是衡量他们分布的程度。比如可以算算他们在空间中占据了多大的体积,例如给负类找一个超球——就是高维空间里的球啦——它可以包含所有负类的样本,再给正类找一个,比比两个球的半径,就可以大致确定分布的情况。显然半径大的分布就比较广,就给小一点的惩罚因子。

但是这样还不够好,因为有的类别样本确实很集中,这不是提供的样本数量多少的问题,这是类别本身的特征,这个时候即便超球的半径差异很大,也不应该赋予两个类别不同的惩罚因子。这样应该怎么解决呢……实际中,完美的方法是没有的,只要根据需要,选择实现简单又合用的就好了。

7. SVM松弛变量的更多相关文章

  1. 数据集偏斜 - class skew problem - 以SVM松弛变量为例

    原文 接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C.回头看一眼引入了松弛变量以后的优化问题: 注意其中C的位置,也可以回想一下C所起的 ...

  2. SVM松弛变量-记录毕业论文3

    上一篇博客讨论了高维映射和核函数,也通过例子说明了将特征向量映射到高维空间中可以使其线性可分.然而,很多情况下的高维映射并不能保证线性可分,这时就可以通过加入松弛变量放松约束条件.同样这次的记录仍然通 ...

  3. SVM学习笔记

    一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...

  4. Relation Extraction中SVM分类样例unbalance data问题解决 -松弛变量与惩罚因子

    转载自:http://blog.csdn.net/yangliuy/article/details/8152390 1.问题描述 做关系抽取就是要从产品评论中抽取出描述产品特征项的target短语以及 ...

  5. SVM学习(五):松弛变量与惩罚因子

    https://blog.csdn.net/qll125596718/article/details/6910921 1.松弛变量 现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而 ...

  6. SVM学习(续)核函数 & 松弛变量和惩罚因子

    SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenan ...

  7. 1. SVM简介

    从这一部分开始,将陆续介绍SVM的相关知识,主要是整理以前学习的一些笔记内容,梳理思路,形成一套SVM的学习体系. 支持向量机(Support Vector Machine)是Cortes和Vapni ...

  8. 【十大经典数据挖掘算法】SVM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...

  9. 机器学习实战笔记(Python实现)-05-支持向量机(SVM)

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

随机推荐

  1. 【资源】.Net 入门@提高 - 逆天的高薪之路!

     入门看视频,提高看书籍,飘升做项目.老练研开源,高手读外文,大牛讲低调~    官方学习计划 http://www.cnblogs.com/dunitian/p/5667901.html ----- ...

  2. Python的单元测试(一)

    title: Python的单元测试(一) author: 青南 date: 2015-02-27 22:50:47 categories: Python tags: [Python,单元测试] -- ...

  3. 【初学python】使用python调用monkey测试

    目前公司主要开发安卓平台的APP,平时测试经常需要使用monkey测试,所以尝试了下用python调用monkey,代码如下: import os apk = {'j': 'com.***.test1 ...

  4. Android消息传递之基于RxJava实现一个EventBus - RxBus

    前言: 上篇文章学习了Android事件总线管理开源框架EventBus,EventBus的出现大大降低了开发成本以及开发难度,今天我们就利用目前大红大紫的RxJava来实现一下类似EventBus事 ...

  5. UWP开发之Template10实践:本地文件与照相机文件操作的MVVM实例(图文付原代码)

    前面[UWP开发之Mvvmlight实践五:SuspensionManager中断挂起以及复原处理]章节已经提到过Template10,为了认识MvvmLight的区别特做了此实例. 原代码地址:ht ...

  6. 使用SecureCRT连接虚拟机(ubuntu)配置记录

    这种配置方法,可以非常方便的操作虚拟机里的Linux系统,且让VMware在后台运行,因为有时候我直接在虚拟机里操作会稍微卡顿,或者切换速度不理想,使用该方法亲测本机效果确实ok,特此记录. Secu ...

  7. 阿里云学生优惠Windows Server 2012 R2安装IIS,ftp等组件,绑定服务器域名,域名解析到服务器,域名备案,以及安装期间错误的解决方案

     前言: 这几天终于还是按耐不住买了一个月阿里云的学生优惠.只要是学生,在学信网上注册过,并且支付宝实名认证,就可以用9块9的价格买阿里云的云服务ECS.确实是相当的优惠. 我买的是Windows S ...

  8. 免费道路 bzoj 3624

    免费道路(1s 128MB)roads [输入样例] 5 7 21 3 04 5 13 2 05 3 14 3 01 2 14 2 1 [输出样例] 3 2 04 3 05 3 11 2 1 题解: ...

  9. 【从零开始学BPM,Day5】报表配置及自定义功能页面开发

    [课程主题] 主题:5天,一起从零开始学习BPM [课程形式] 1.为期5天的短任务学习 2.每天观看一个视频,视频学习时间自由安排. [第五天课程] 1.课程概要 Step 1 软件下载:H3 BP ...

  10. 如何解决流程开发中SheetRadioButtonList页面取值问题

    分享一个常见的取值问题. 应用场景: SheetRadioButtonList控件,点击其中一项执行事件操作.如果是页面加载的情况下,值就无法取到. 具体原因如下: 我给SheetRadioButto ...