http://blog.csdn.net/hsuxu/article/details/8985931

******************************************************

1、线程池简介:

    多线程技术主要解决处理器单元内多个线程执行的问题,它可以显著减少处理器单元的闲置时间,增加处理器单元的吞吐能力。   

    假设一个服务器完成一项任务所需时间为:T1 创建线程时间,T2 在线程中执行任务的时间,T3 销毁线程时间。



    如果:T1 + T3 远大于 T2,则可以采用线程池,以提高服务器性能。

                一个线程池包括以下四个基本组成部分:

                1、线程池管理器(ThreadPool):用于创建并管理线程池,包括 创建线程池,销毁线程池,添加新任务;

                2、工作线程(PoolWorker):线程池中线程,在没有任务时处于等待状态,可以循环的执行任务;

                3、任务接口(Task):每个任务必须实现的接口,以供工作线程调度任务的执行,它主要规定了任务的入口,任务执行完后的收尾工作,任务的执行状态等;

                4、任务队列(taskQueue):用于存放没有处理的任务。提供一种缓冲机制。

               

    线程池技术正是关注如何缩短或调整T1,T3时间的技术,从而提高服务器程序性能的。它把T1,T3分别安排在服务器程序的启动和结束的时间段或者一些空闲的时间段,这样在服务器程序处理客户请求时,不会有T1,T3的开销了。

    线程池不仅调整T1,T3产生的时间段,而且它还显著减少了创建线程的数目,看一个例子:

   
假设一个服务器一天要处理50000个请求,并且每个请求需要一个单独的线程完成。在线程池中,线程数一般是固定的,所以产生线程总数不会超过线程池中线程的数目,而如果服务器不利用线程池来处理这些请求则线程总数为50000。一般线程池大小是远小于50000。所以利用线程池的服务器程序不会为了创建50000而在处理请求时浪费时间,从而提高效率。

代码实现中并没有实现任务接口,而是把Runnable对象加入到线程池管理器(ThreadPool),然后剩下的事情就由线程池管理器(ThreadPool)来完成了

  1. package mine.util.thread;
  2. import java.util.LinkedList;
  3. import java.util.List;
  4. /**
  5. * 线程池类,线程管理器:创建线程,执行任务,销毁线程,获取线程基本信息
  6. */
  7. public final class ThreadPool {
  8. // 线程池中默认线程的个数为5
  9. private static int worker_num = 5;
  10. // 工作线程
  11. private WorkThread[] workThrads;
  12. // 未处理的任务
  13. private static volatile int finished_task = 0;
  14. // 任务队列,作为一个缓冲,List线程不安全
  15. private List<Runnable> taskQueue = new LinkedList<Runnable>();
  16. private static ThreadPool threadPool;
  17. // 创建具有默认线程个数的线程池
  18. private ThreadPool() {
  19. this(5);
  20. }
  21. // 创建线程池,worker_num为线程池中工作线程的个数
  22. private ThreadPool(int worker_num) {
  23. ThreadPool.worker_num = worker_num;
  24. workThrads = new WorkThread[worker_num];
  25. for (int i = 0; i < worker_num; i++) {
  26. workThrads[i] = new WorkThread();
  27. workThrads[i].start();// 开启线程池中的线程
  28. }
  29. }
  30. // 单态模式,获得一个默认线程个数的线程池
  31. public static ThreadPool getThreadPool() {
  32. return getThreadPool(ThreadPool.worker_num);
  33. }
  34. // 单态模式,获得一个指定线程个数的线程池,worker_num(>0)为线程池中工作线程的个数
  35. // worker_num<=0创建默认的工作线程个数
  36. public static ThreadPool getThreadPool(int worker_num1) {
  37. if (worker_num1 <= 0)
  38. worker_num1 = ThreadPool.worker_num;
  39. if (threadPool == null)
  40. threadPool = new ThreadPool(worker_num1);
  41. return threadPool;
  42. }
  43. // 执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定
  44. public void execute(Runnable task) {
  45. synchronized (taskQueue) {
  46. taskQueue.add(task);
  47. taskQueue.notify();
  48. }
  49. }
  50. // 批量执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定
  51. public void execute(Runnable[] task) {
  52. synchronized (taskQueue) {
  53. for (Runnable t : task)
  54. taskQueue.add(t);
  55. taskQueue.notify();
  56. }
  57. }
  58. // 批量执行任务,其实只是把任务加入任务队列,什么时候执行有线程池管理器觉定
  59. public void execute(List<Runnable> task) {
  60. synchronized (taskQueue) {
  61. for (Runnable t : task)
  62. taskQueue.add(t);
  63. taskQueue.notify();
  64. }
  65. }
  66. // 销毁线程池,该方法保证在所有任务都完成的情况下才销毁所有线程,否则等待任务完成才销毁
  67. public void destroy() {
  68. while (!taskQueue.isEmpty()) {// 如果还有任务没执行完成,就先睡会吧
  69. try {
  70. Thread.sleep(10);
  71. } catch (InterruptedException e) {
  72. e.printStackTrace();
  73. }
  74. }
  75. // 工作线程停止工作,且置为null
  76. for (int i = 0; i < worker_num; i++) {
  77. workThrads[i].stopWorker();
  78. workThrads[i] = null;
  79. }
  80. threadPool=null;
  81. taskQueue.clear();// 清空任务队列
  82. }
  83. // 返回工作线程的个数
  84. public int getWorkThreadNumber() {
  85. return worker_num;
  86. }
  87. // 返回已完成任务的个数,这里的已完成是只出了任务队列的任务个数,可能该任务并没有实际执行完成
  88. public int getFinishedTasknumber() {
  89. return finished_task;
  90. }
  91. // 返回任务队列的长度,即还没处理的任务个数
  92. public int getWaitTasknumber() {
  93. return taskQueue.size();
  94. }
  95. // 覆盖toString方法,返回线程池信息:工作线程个数和已完成任务个数
  96. @Override
  97. public String toString() {
  98. return "WorkThread number:" + worker_num + "  finished task number:"
  99. + finished_task + "  wait task number:" + getWaitTasknumber();
  100. }
  101. /**
  102. * 内部类,工作线程
  103. */
  104. private class WorkThread extends Thread {
  105. // 该工作线程是否有效,用于结束该工作线程
  106. private boolean isRunning = true;
  107. /*
  108. * 关键所在啊,如果任务队列不空,则取出任务执行,若任务队列空,则等待
  109. */
  110. @Override
  111. public void run() {
  112. Runnable r = null;
  113. while (isRunning) {// 注意,若线程无效则自然结束run方法,该线程就没用了
  114. synchronized (taskQueue) {
  115. while (isRunning && taskQueue.isEmpty()) {// 队列为空
  116. try {
  117. taskQueue.wait(20);
  118. } catch (InterruptedException e) {
  119. e.printStackTrace();
  120. }
  121. }
  122. if (!taskQueue.isEmpty())
  123. r = taskQueue.remove(0);// 取出任务
  124. }
  125. if (r != null) {
  126. r.run();// 执行任务
  127. }
  128. finished_task++;
  129. r = null;
  130. }
  131. }
  132. // 停止工作,让该线程自然执行完run方法,自然结束
  133. public void stopWorker() {
  134. isRunning = false;
  135. }
  136. }
  137. }

测试代码:

  1. package mine.util.thread;
  2. //测试线程池
  3. public class TestThreadPool {
  4. public static void main(String[] args) {
  5. // 创建3个线程的线程池
  6. ThreadPool t = ThreadPool.getThreadPool(3);
  7. t.execute(new Runnable[] { new Task(), new Task(), new Task() });
  8. t.execute(new Runnable[] { new Task(), new Task(), new Task() });
  9. System.out.println(t);
  10. t.destroy();// 所有线程都执行完成才destory
  11. System.out.println(t);
  12. }
  13. // 任务类
  14. static class Task implements Runnable {
  15. private static volatile int i = 1;
  16. @Override
  17. public void run() {// 执行任务
  18. System.out.println("任务 " + (i++) + " 完成");
  19. }
  20. }
  21. }

运行结果:

WorkThread number:3  finished task number:0  wait task number:6

任务 1 完成

任务 2 完成

任务 3 完成

任务 4 完成

任务 5 完成

任务 6 完成

WorkThread number:3  finished task number:6  wait task number:0

分析:由于并没有任务接口,传入的可以是自定义的任何任务,所以线程池并不能准确的判断该任务是否真正的已经完成(真正完成该任务是这个任务的run方法执行完毕),只能知道该任务已经出了任务队列,正在执行或者已经完成。

2、Java类库中提供的线程池简介:

     java提供的线程池更加强大,相信理解线程池的工作原理,看类库中的线程池就不会感到陌生了。

 

线程池的原理及实现 (zhuan)的更多相关文章

  1. Java线程池的原理及几类线程池的介绍

    刚刚研究了一下线程池,如果有不足之处,请大家不吝赐教,大家共同学习.共同交流. 在什么情况下使用线程池? 单个任务处理的时间比较短 将需处理的任务的数量大 使用线程池的好处: 减少在创建和销毁线程上所 ...

  2. Python 线程池的原理和实现及subprocess模块

    最近由于项目需要一个与linux shell交互的多线程程序,需要用python实现,之前从没接触过python,这次匆匆忙忙的使用python,发现python确实语法非常简单,功能非常强大,因为自 ...

  3. 并发编程(十二)—— Java 线程池 实现原理与源码深度解析 之 submit 方法 (二)

    在上一篇<并发编程(十一)—— Java 线程池 实现原理与源码深度解析(一)>中提到了线程池ThreadPoolExecutor的原理以及它的execute方法.这篇文章是接着上一篇文章 ...

  4. Java线程池实现原理与技术(ThreadPoolExecutor、Executors)

    本文将通过实现一个简易的线程池理解线程池的原理,以及介绍JDK中自带的线程池ThreadPoolExecutor和Executor框架. 1.无限制线程的缺陷 多线程的软件设计方法确实可以最大限度地发 ...

  5. 深入浅出JAVA线程池使用原理1

    前言: Java中的线程池是并发框架中运用最多的,几乎所有需要异步或并发执行任务的程序都可以使用线程池,线程池主要有三个好处: 1.降低资源消耗:可以重复使用已经创建的线程降低线程创建和销毁带来的消耗 ...

  6. JUC回顾之-线程池的原理和使用

    Java并发编程:线程池的使用   Java并发编程:线程池的使用 在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程 ...

  7. 11 java 线程池 实现原理

    一 关键类的实现 1 ThreadPoolExecutor类 java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因此如果要透彻地了解Java中的 ...

  8. JAVA线程池的原理分析

    线程池的作用 1.降低资源的消耗 2.提高效率 3.方便管理 相关概念 corePoolSize核心线程数:核心池的大小,当有任务到达之后,就会创建一个线程去执行任务,当任务数量到达核心线程数后,就会 ...

  9. Java进阶——— 线程池的原理分析

    前言 在了解线程池之前,其实首先出现的疑问是:为什么要使用线程池,其次是了解什么是线程池,最后是如何使用线程池,带着疑问去学习. 为什么要使用 前面多线程文章中,需要使用线程就开启一个新线程,简单方便 ...

随机推荐

  1. hdu1074 Doing Homework

    这题比较有意思,暴力搜索必然tle,可以用状态压缩dp解决. 我们先不考虑完成所有作业的扣分,而考虑其一个子集的情况. 假设我们得到了完成某子集S对应的作业最少扣分,我们试着向该子集中增加一个元素a, ...

  2. Friendship

    Friendship Time Limit: 2000MS Memory Limit: 20000K Total Submissions: 9824 Accepted: 2720 Descriptio ...

  3. Emag eht htiw Em Pleh 分类: POJ 2015-06-29 18:54 10人阅读 评论(0) 收藏

    Emag eht htiw Em Pleh Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2937   Accepted: ...

  4. WDCP控制面板如何安装PDO_mysql组件

    http://osacar.iteye.com/blog/2098431 执行wget -c http://down.wdlinux.cn/in/pdo_mysql_ins.sh再执行chmod 75 ...

  5. 编译android源码官方教程(1)硬件、系统要求

    https://source.android.com/source/requirements.html Requirements IN THIS DOCUMENT Hardware requireme ...

  6. Windows 多线程知识点汇总

    一.什么叫原子性? 答:一个操作不会被分成两个时间片来执行,不会刚执行到一半,由于时间片到了,CPU就跑去执行其他线程了.在多线程环境中对一个变量进行读写时,我们需要有一种方法能够保证对一个值的操作是 ...

  7. 十二 个经典 Linux 进程管理命令介绍

    执行中的程序在称作进程.当程序以可执行文件存放在存储中,并且运行的时候,每个进程会被动态得分配系统资源.内存.安全属性和与之相关的状态.可以有多个进程关联到同一个程序,并同时执行不会互相干扰.操作系统 ...

  8. C#注册表操作,根据键取值

    string into = ""; RegistryKey key = Registry.LocalMachine; RegistryKey myreg = key.OpenSub ...

  9. 在包a中新建一个类A,在类A中有一个int add(int m)方法,用来求1+2+…+m 的和。在包b中新建一个类B,在类B中有一个int cheng(int n)方法,用来求n! 的结果。在包c中新建一个主类C,调用A、B中的方法输出1+2+…+30的和, 以及5!的计算结果。

    package a; public class A { public void add(int m) { int sum=0; for (int i = 1; i <=m; i++) { sum ...

  10. 关于socket tcp 断线重连

    这个问题困扰过我几次,都没有来得及研究,今天研究一下. 首先写一个最简易的socket tcp程序,连接成功后再关闭服务器然后再用客户端各种操作看是什么情况 测试表明 (1)客户端已经连接,当服务端关 ...