https://guangchun.wordpress.com/2011/10/13/ml-bayes-map/

http://www.mi.fu-berlin.de/wiki/pub/ABI/Genomics12/MLvsMAP.pdf

经验风险最小化:

\min \limits_{f\in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i,f(x_i))

结构风险最小化:

\min \limits_{f\in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i,f(x_i))+\lambda J(f)

李航博士《统计学习方法》中第一章第九页中有两个论断

1 当模型是条件概率分布,损失函数是对数损失函数时,经验风险最小化就等价于极大似然估计。

2 当模型是条件概率分布、损失函数是对数损失函数、模型复杂度由模型的先验概率表示时,结构风险最小化就等价于最大后验概率估计

证明论断1:

极大似然估计:对于观测的随机变量D,其总体分布为

P(D;\theta)

S为抽样得到的样本,

S=(s_1,s_2,...,s_N)

样本是独立同分布得到的,因此样本的分布为

L(\theta) = \prod_{i=1}^{N} P(s_i;\theta)

S=(s_1,s_2,...,s_N)
确定,则上式可以看做是

\theta

的函数。

这个函数反映了在观察结果已知的情况下,
\theta

的“似然程度”,因此上式被叫做似然函数。用似然程度最大的那个

\theta_{*}

去做

\theta

的估计,这种估计方法叫做"极大似然估计"。取对数,极大平均似然函数为:

\max log L(\theta)=\max \frac{1}{N}\sum_{i=1}^{N}log P(s_i;\theta)

上式等价于

\min -log L(\theta)=\min \frac{1}{N}\sum_{i=1}^{N} -log P(s_i;\theta)

在统计学习中,S就是样本,

s_{i}=(x_i,y_i).x_i\mbox{为特征,}y_i{为标签}

当模型是条件概率分布时,则

P(s_i;\theta)=P(y_i|x_i;\theta)
\min -log L(\theta)=\min \frac{1}{N}\sum_{i=1}^{N} -log P(y_i|x_i;\theta) -----(1)

当损失函数是对数损失函数(

L(Y,P(Y|X)) = -log P(Y|X)

),则最小化经验风险的公式为

\min \limits_{f\in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i,f(x_i))
=\min \limits_{f\in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i,p(y_i|x_i;\theta))
=\min \limits_{f\in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} -log p(y_i|x_i;\theta) -----(2)

对比(1)(2)两个公式,论断1得证。

证明论断2

极大似然估计将

\theta

看做是一个确定但未知的常量,而贝叶斯学派则认为

\theta

可以看做一个随机变量,从这个视角出发可得到条件概率

P(\theta|S)

因此利用贝叶斯公式得到

P(\theta|S)=\frac{P(S|\theta)P(\theta)}{P(S)}

最大后验概率估计是要最大化

P(\theta|S)

这个后验概率,因此

\max P(\theta|S) = \max P(S|\theta)P(\theta)

上式与极大似然估计相比,只多了个

P(\theta)

,左边和极大似然估计一样,因此对左边取对数处理求平均似然最大

\max \frac{1}{N}\sum_{i=1}^{N} log P(s_i|\theta)+log P(\theta)

当模型是条件概率分布时,则

P(s_i;\theta)=P(y_i|x_i;\theta)

因此,

\max \frac{1}{N}\sum_{i=1}^{N} log P(y_i|x_i;\theta)+log P(\theta)

取负号,转换为

\min \frac{1}{N}\sum_{i=1}^{N} -log P(y_i|x_i;\theta)-log P(\theta)   -----(3)

当损失函数是对数损失函数(

L(Y,P(Y|X)) = -log P(Y|X)

),模型是条件概率分布时,

结构风险最小化公式

\min \limits_{f\in F} \frac{1}{N} \sum_{i=1}^{N} L(y_i,f(x_i))+\lambda J(f)
=\min \limits_{f\in F} \frac{1}{N} \sum_{i=1}^{N} -log P(y_i|x_i;\theta)+\lambda J(f) -----(4)
比较公式(3)(4),则当
\lambda J(f) = -log P(\theta)

两者等价,论断2得证。

(汉武提问,

\lambda

在(4)中没有出现,其实

\lambda

为超参,在模型中一般首先指定,如果为1/2 , 则

-1/2*2log P(\theta)

), 所以无论怎么取,都可以得到对应的使得等价。

极大似然估计&最大后验概率估计的更多相关文章

  1. [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

    [白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...

  2. (转载)极大似然估计&最大后验概率估计

    前言 不知看过多少次极大似然估计与最大后验概率估计的区别,但还是傻傻分不清楚.或是当时道行太浅,或是当时积累不够. 这次重游机器学习之路,看到李航老师<统计学习方法>中第一章关于经验风险最 ...

  3. 极大似然估计、贝叶斯估计、EM算法

    参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就 ...

  4. 机器学习(二十五)— 极大似然估计(MLE)、贝叶斯估计、最大后验概率估计(MAP)区别

    最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参 ...

  5. 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

    转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/ ...

  6. 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化

    1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...

  7. 【机器学习基本理论】详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

    [机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximu ...

  8. 浅议极大似然估计(MLE)背后的思想原理

    1. 概率思想与归纳思想 0x1:归纳推理思想 所谓归纳推理思想,即是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理.抽象地来说,由个别事实概括出一般结论的推理称为归纳推 ...

  9. MLE极大似然估计和EM最大期望算法

    机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM ...

随机推荐

  1. 当C++学到第20天的时候我崩溃了(找回刚开始的激情)

    首先声明,我是个使用多语言(ASM/C/C++/Java/Perl)的人,主要使用C++和Java所以我认为我的意见还算中肯.那些否定C++的人,你们是否了解————Borland鼓吹Delphi如何 ...

  2. lintcode:背包问题II

    背包问题II 给出n个物品的体积A[i]和其价值V[i],将他们装入一个大小为m的背包,最多能装入的总价值有多大? 注意事项 A[i], V[i], n, m均为整数.你不能将物品进行切分.你所挑选的 ...

  3. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

  4. C++运算符重载——重载特殊运算符

    1.重载赋值运算符= 赋值运算符用于同类对象间的相互赋值.赋值运算符只能被重载为类的非静态成员函数,不能重载为友元函数和普通函数. 对于用户自定义的类而言,如果没有重载赋值运算符,那么C++编译器会为 ...

  5. MyBatis学习总结_03_优化MyBatis配置文件中的配置

    一.连接数据库的配置单独放在一个properties文件中 之前,我们是直接将数据库的连接配置信息写在了MyBatis的conf.xml文件中,如下: 1 <?xml version=" ...

  6. OpenGL环境搭建Windows+Mac+Linux

    OpenGL环境搭建Windows+Mac+Linux Mac平台下 下载列表:GLFWcmake 下载的GLFW解压缩 然后安装cmake, 安装好cmake之后打开 1.browse source ...

  7. post提交/文件上传服务器修改

    第一步:修改在php5下POST文件大小的限制   1.编修php.ini   找到:max_execution_time = 30 ,这个是每个脚本运行的最长时间,单位秒,修改为: max_exec ...

  8. 【Cocosd2d实例教程二】地图编辑器Tiled的安装使用

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 我们知道cocos2d是一个基于2d效果的游戏引擎,那么如果制作一个2d手机游戏我们需要创建相应的游戏画面,而c ...

  9. ACdream 1735 输油管道 (排序)

    http://acdream.info/problem?pid=1735 官方题解:http://acdream.info/topic?tid=4246 因为主干线是平行于x轴的直线,那么跟x坐标其实 ...

  10. asp存储过程

    dim s_ip,MyComm s_ip=request.ServerVariables("REMOTE_ADDR") Set MyComm = Server.CreateObje ...