极大似然估计&最大后验概率估计
https://guangchun.wordpress.com/2011/10/13/ml-bayes-map/
http://www.mi.fu-berlin.de/wiki/pub/ABI/Genomics12/MLvsMAP.pdf
经验风险最小化:
\min \limits_{f\in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i,f(x_i))
|
结构风险最小化:
\min \limits_{f\in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i,f(x_i))+\lambda J(f)
|
李航博士《统计学习方法》中第一章第九页中有两个论断
1 当模型是条件概率分布,损失函数是对数损失函数时,经验风险最小化就等价于极大似然估计。
2 当模型是条件概率分布、损失函数是对数损失函数、模型复杂度由模型的先验概率表示时,结构风险最小化就等价于最大后验概率估计
证明论断1:
极大似然估计:对于观测的随机变量D,其总体分布为
P(D;\theta) |
S为抽样得到的样本,
S=(s_1,s_2,...,s_N) |
样本是独立同分布得到的,因此样本的分布为
L(\theta) = \prod_{i=1}^{N} P(s_i;\theta)
|
当
S=(s_1,s_2,...,s_N) |
\theta |
的函数。
\theta |
的“似然程度”,因此上式被叫做似然函数。用似然程度最大的那个
\theta_{*}
|
去做
\theta |
的估计,这种估计方法叫做"极大似然估计"。取对数,极大平均似然函数为:
\max log L(\theta)=\max \frac{1}{N}\sum_{i=1}^{N}log P(s_i;\theta)
|
上式等价于
\min -log L(\theta)=\min \frac{1}{N}\sum_{i=1}^{N} -log P(s_i;\theta)
|
在统计学习中,S就是样本,
s_{i}=(x_i,y_i).x_i\mbox{为特征,}y_i{为标签}
|
当模型是条件概率分布时,则
P(s_i;\theta)=P(y_i|x_i;\theta) |
\min -log L(\theta)=\min \frac{1}{N}\sum_{i=1}^{N} -log P(y_i|x_i;\theta) -----(1)
|
当损失函数是对数损失函数(
L(Y,P(Y|X)) = -log P(Y|X) |
),则最小化经验风险的公式为
\min \limits_{f\in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i,f(x_i))
|
对比(1)(2)两个公式,论断1得证。
证明论断2
极大似然估计将
\theta |
看做是一个确定但未知的常量,而贝叶斯学派则认为
\theta |
可以看做一个随机变量,从这个视角出发可得到条件概率
P(\theta|S) |
因此利用贝叶斯公式得到
P(\theta|S)=\frac{P(S|\theta)P(\theta)}{P(S)}
|
最大后验概率估计是要最大化
P(\theta|S) |
这个后验概率,因此
\max P(\theta|S) = \max P(S|\theta)P(\theta) |
上式与极大似然估计相比,只多了个
P(\theta) |
,左边和极大似然估计一样,因此对左边取对数处理求平均似然最大
\max \frac{1}{N}\sum_{i=1}^{N} log P(s_i|\theta)+log P(\theta)
|
当模型是条件概率分布时,则
P(s_i;\theta)=P(y_i|x_i;\theta) |
因此,
\max \frac{1}{N}\sum_{i=1}^{N} log P(y_i|x_i;\theta)+log P(\theta)
|
取负号,转换为
\min \frac{1}{N}\sum_{i=1}^{N} -log P(y_i|x_i;\theta)-log P(\theta) -----(3)
|
当损失函数是对数损失函数(
L(Y,P(Y|X)) = -log P(Y|X) |
),模型是条件概率分布时,
结构风险最小化公式
\min \limits_{f\in F} \frac{1}{N} \sum_{i=1}^{N} L(y_i,f(x_i))+\lambda J(f)
|
\lambda J(f) = -log P(\theta) |
两者等价,论断2得证。
(汉武提问,
\lambda |
在(4)中没有出现,其实
\lambda |
为超参,在模型中一般首先指定,如果为1/2 , 则
-1/2*2log P(\theta) |
), 所以无论怎么取,都可以得到对应的使得等价。
极大似然估计&最大后验概率估计的更多相关文章
- [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计
[白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...
- (转载)极大似然估计&最大后验概率估计
前言 不知看过多少次极大似然估计与最大后验概率估计的区别,但还是傻傻分不清楚.或是当时道行太浅,或是当时积累不够. 这次重游机器学习之路,看到李航老师<统计学习方法>中第一章关于经验风险最 ...
- 极大似然估计、贝叶斯估计、EM算法
参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就 ...
- 机器学习(二十五)— 极大似然估计(MLE)、贝叶斯估计、最大后验概率估计(MAP)区别
最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参 ...
- 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/ ...
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
- 【机器学习基本理论】详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解
[机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximu ...
- 浅议极大似然估计(MLE)背后的思想原理
1. 概率思想与归纳思想 0x1:归纳推理思想 所谓归纳推理思想,即是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理.抽象地来说,由个别事实概括出一般结论的推理称为归纳推 ...
- MLE极大似然估计和EM最大期望算法
机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM ...
随机推荐
- iOS第三方推送-极光推送
@import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/c ...
- [LeetNode]Sort List
Sort a linked list in O(n log n) time using constant space complexity. 思路:分治+递归. /** * Definition fo ...
- ExtJs之Ext.util.TextMetrics
<!DOCTYPE html> <html> <head> <title>ExtJs</title> <meta http-equiv ...
- Visual Studio 常用快捷键 (二)
想不到上一篇 [Visual Studio 常用快捷键] 受这么多人的欢迎.看来大家对Visual Studio的用法非常感兴趣. 接下来我准备写一个 “Visual Studio使用技巧 ” 一个系 ...
- [你必须知道的.NET]第二十九回:.NET十年(上)
发布日期:2009.05.08 作者:Anytao © 2009 Anytao.com ,Anytao原创作品,转贴请注明作者和出处. /// <summary> /// 本文部分内容,已 ...
- poj 2425 A Chess Game 博弈论
思路:SG函数应用!! 代码如下: #include<iostream> #include<cstdio> #include<cmath> #include< ...
- poj 1724(有限制的最短路)
题目链接:http://poj.org/problem?id=1724 思路: 有限制的最短路,或者说是二维状态吧,在求最短路的时候记录一下花费即可.一开始用SPFA写的,900MS险过啊,然后改成D ...
- 一起学习redis源码
redis的一些介绍,麻烦阅读前面的几篇文章,想对redis的详细实现有所了解,强力推荐<redis设计与实现>(不仅仅从作者那儿学习到redis的实现,还有项目的管理.思想等,作者可能比 ...
- Hibernate笔记——C3P0配置
Hibernate作为持久层(ORM)框架,操作数据库,自然也就离不开数据库连接池了.其支持多种连接池,这里就用最熟悉的C3P0连接池. C3P0连接池前面已经介绍了并使用很多次了就不再详细说明了. ...
- SpringBoot配置属性之Server
SpringBoot配置属性系列 SpringBoot配置属性之MVC SpringBoot配置属性之Server SpringBoot配置属性之DataSource SpringBoot配置属性之N ...