源码:

 #ifndef _LINUX_LIST_H
 #define _LINUX_LIST_H

 /*
  * Simple doubly linked list implementation.
  *
  * Some of the internal functions ("__xxx") are useful when
  * manipulating whole lists rather than single entries, as
  * sometimes we already know the next/prev entries and we can
  * generate better code by using them directly rather than
  * using the generic single-entry routines.
  */

 struct list_head {
     struct list_head *next, *prev;
 };

 #ifndef offsetof
 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
 #endif

 #ifndef container_of
 /**
  * container_of - cast a member of a structure out to the containing structure
  * @ptr:    the pointer to the member.
  * @type:    the type of the container struct this is embedded in.
  * @member:    the name of the member within the struct.
  *
  */
 #define container_of(ptr, type, member) ({            \
     )->member) * __mptr = (ptr);    \
     (type *)((char *)__mptr - offsetof(type, member)); })
 #endif

 #define LIST_HEAD_INIT(name) { &(name), &(name) }

 #define LIST_HEAD(name) \
     struct list_head name = LIST_HEAD_INIT(name)

 static inline void INIT_LIST_HEAD(struct list_head *list)
 {
     list->next = list;
     list->prev = list;
 }

 /*
  * Insert a new entry between two known consecutive entries.
  *
  * This is only for internal list manipulation where we know
  * the prev/next entries already!
  */
 #ifndef CONFIG_DEBUG_LIST
 static inline void __list_add(struct list_head *new,
                   struct list_head *prev,
                   struct list_head *next)
 {
     next->prev = new;
     new->next = next;
     new->prev = prev;
     prev->next = new;
 }
 #else
 extern void __list_add(struct list_head *new,
                   struct list_head *prev,
                   struct list_head *next);
 #endif

 /**
  * list_add - add a new entry
  * @new: new entry to be added
  * @head: list head to add it after
  *
  * Insert a new entry after the specified head.
  * This is good for implementing stacks.
  */
 static inline void list_add(struct list_head *new, struct list_head *head)
 {
     __list_add(new, head, head->next);
 }

 /**
  * list_add_tail - add a new entry
  * @new: new entry to be added
  * @head: list head to add it before
  *
  * Insert a new entry before the specified head.
  * This is useful for implementing queues.
  */
 static inline void list_add_tail(struct list_head *new, struct list_head *head)
 {
     __list_add(new, head->prev, head);
 }

 /*
  * Delete a list entry by making the prev/next entries
  * point to each other.
  *
  * This is only for internal list manipulation where we know
  * the prev/next entries already!
  */
 static inline void __list_del(struct list_head * prev, struct list_head * next)
 {
     next->prev = prev;
     prev->next = next;
 }

 /**
  * list_del - deletes entry from list.
  * @entry: the element to delete from the list.
  * Note: list_empty() on entry does not return true after this, the entry is
  * in an undefined state.
  */
 #ifndef CONFIG_DEBUG_LIST
 static inline void __list_del_entry(struct list_head *entry)
 {
     __list_del(entry->prev, entry->next);
 }

 static inline void list_del(struct list_head *entry)
 {
     __list_del(entry->prev, entry->next);
     INIT_LIST_HEAD(entry);
 }
 #else
 extern void __list_del_entry(struct list_head *entry);
 extern void list_del(struct list_head *entry);
 #endif

 /**
  * list_replace - replace old entry by new one
  * @old : the element to be replaced
  * @new : the new element to insert
  *
  * If @old was empty, it will be overwritten.
  */
 static inline void list_replace(struct list_head *old,
                 struct list_head *new)
 {
     new->next = old->next;
     new->next->prev = new;
     new->prev = old->prev;
     new->prev->next = new;
 }

 static inline void list_replace_init(struct list_head *old,
                     struct list_head *new)
 {
     list_replace(old, new);
     INIT_LIST_HEAD(old);
 }

 /**
  * list_del_init - deletes entry from list and reinitialize it.
  * @entry: the element to delete from the list.
  */
 static inline void list_del_init(struct list_head *entry)
 {
     __list_del_entry(entry);
     INIT_LIST_HEAD(entry);
 }

 /**
  * list_move - delete from one list and add as another's head
  * @list: the entry to move
  * @head: the head that will precede our entry
  */
 static inline void list_move(struct list_head *list, struct list_head *head)
 {
     __list_del_entry(list);
     list_add(list, head);
 }

 /**
  * list_move_tail - delete from one list and add as another's tail
  * @list: the entry to move
  * @head: the head that will follow our entry
  */
 static inline void list_move_tail(struct list_head *list,
                   struct list_head *head)
 {
     __list_del_entry(list);
     list_add_tail(list, head);
 }

 /**
  * list_is_last - tests whether @list is the last entry in list @head
  * @list: the entry to test
  * @head: the head of the list
  */
 static inline int list_is_last(const struct list_head *list,
                 const struct list_head *head)
 {
     return list->next == head;
 }

 /**
  * list_empty - tests whether a list is empty
  * @head: the list to test.
  */
 static inline int list_empty(const struct list_head *head)
 {
     return head->next == head;
 }

 /**
  * list_empty_careful - tests whether a list is empty and not being modified
  * @head: the list to test
  *
  * Description:
  * tests whether a list is empty _and_ checks that no other CPU might be
  * in the process of modifying either member (next or prev)
  *
  * NOTE: using list_empty_careful() without synchronization
  * can only be safe if the only activity that can happen
  * to the list entry is list_del_init(). Eg. it cannot be used
  * if another CPU could re-list_add() it.
  */
 static inline int list_empty_careful(const struct list_head *head)
 {
     struct list_head *next = head->next;
     return (next == head) && (next == head->prev);
 }

 /**
  * list_rotate_left - rotate the list to the left
  * @head: the head of the list
  */
 static inline void list_rotate_left(struct list_head *head)
 {
     struct list_head *first;

     if (!list_empty(head)) {
         first = head->next;
         list_move_tail(first, head);
     }
 }

 /**
  * list_is_singular - tests whether a list has just one entry.
  * @head: the list to test.
  */
 static inline int list_is_singular(const struct list_head *head)
 {
     return !list_empty(head) && (head->next == head->prev);
 }

 static inline void __list_cut_position(struct list_head *list,
         struct list_head *head, struct list_head *entry)
 {
     struct list_head *new_first = entry->next;
     list->next = head->next;
     list->next->prev = list;
     list->prev = entry;
     entry->next = list;
     head->next = new_first;
     new_first->prev = head;
 }

 /**
  * list_cut_position - cut a list into two
  * @list: a new list to add all removed entries
  * @head: a list with entries
  * @entry: an entry within head, could be the head itself
  *    and if so we won't cut the list
  *
  * This helper moves the initial part of @head, up to and
  * including @entry, from @head to @list. You should
  * pass on @entry an element you know is on @head. @list
  * should be an empty list or a list you do not care about
  * losing its data.
  *
  */
 static inline void list_cut_position(struct list_head *list,
         struct list_head *head, struct list_head *entry)
 {
     if (list_empty(head))
         return;
     if (list_is_singular(head) &&
         (head->next != entry && head != entry))
         return;
     if (entry == head)
         INIT_LIST_HEAD(list);
     else
         __list_cut_position(list, head, entry);
 }

 static inline void __list_splice(const struct list_head *list,
                  struct list_head *prev,
                  struct list_head *next)
 {
     struct list_head *first = list->next;
     struct list_head *last = list->prev;

     first->prev = prev;
     prev->next = first;

     last->next = next;
     next->prev = last;
 }

 /**
  * list_splice - join two lists, this is designed for stacks
  * @list: the new list to add.
  * @head: the place to add it in the first list.
  */
 static inline void list_splice(const struct list_head *list,
                 struct list_head *head)
 {
     if (!list_empty(list))
         __list_splice(list, head, head->next);
 }

 /**
  * list_splice_tail - join two lists, each list being a queue
  * @list: the new list to add.
  * @head: the place to add it in the first list.
  */
 static inline void list_splice_tail(struct list_head *list,
                 struct list_head *head)
 {
     if (!list_empty(list))
         __list_splice(list, head->prev, head);
 }

 /**
  * list_splice_init - join two lists and reinitialise the emptied list.
  * @list: the new list to add.
  * @head: the place to add it in the first list.
  *
  * The list at @list is reinitialised
  */
 static inline void list_splice_init(struct list_head *list,
                     struct list_head *head)
 {
     if (!list_empty(list)) {
         __list_splice(list, head, head->next);
         INIT_LIST_HEAD(list);
     }
 }

 /**
  * list_splice_tail_init - join two lists and reinitialise the emptied list
  * @list: the new list to add.
  * @head: the place to add it in the first list.
  *
  * Each of the lists is a queue.
  * The list at @list is reinitialised
  */
 static inline void list_splice_tail_init(struct list_head *list,
                      struct list_head *head)
 {
     if (!list_empty(list)) {
         __list_splice(list, head->prev, head);
         INIT_LIST_HEAD(list);
     }
 }

 /**
  * list_entry - get the struct for this entry
  * @ptr:    the &struct list_head pointer.
  * @type:    the type of the struct this is embedded in.
  * @member:    the name of the list_struct within the struct.
  */
 #define list_entry(ptr, type, member) \
     container_of(ptr, type, member)

 /**
  * list_first_entry - get the first element from a list
  * @ptr:    the list head to take the element from.
  * @type:    the type of the struct this is embedded in.
  * @member:    the name of the list_struct within the struct.
  *
  * Note, that list is expected to be not empty.
  */
 #define list_first_entry(ptr, type, member) \
     list_entry((ptr)->next, type, member)

 /**
  * list_for_each    -    iterate over a list
  * @pos:    the &struct list_head to use as a loop cursor.
  * @head:    the head for your list.
  */
 #define list_for_each(pos, head) \
     for (pos = (head)->next; pos != (head); pos = pos->next)

 /**
  * __list_for_each    -    iterate over a list
  * @pos:    the &struct list_head to use as a loop cursor.
  * @head:    the head for your list.
  *
  * This variant doesn't differ from list_for_each() any more.
  * We don't do prefetching in either case.
  */
 #define __list_for_each(pos, head) \
     for (pos = (head)->next; pos != (head); pos = pos->next)

 /**
  * list_for_each_prev    -    iterate over a list backwards
  * @pos:    the &struct list_head to use as a loop cursor.
  * @head:    the head for your list.
  */
 #define list_for_each_prev(pos, head) \
     for (pos = (head)->prev; pos != (head); pos = pos->prev)

 /**
  * list_for_each_safe - iterate over a list safe against removal of list entry
  * @pos:    the &struct list_head to use as a loop cursor.
  * @n:        another &struct list_head to use as temporary storage
  * @head:    the head for your list.
  */
 #define list_for_each_safe(pos, n, head) \
     for (pos = (head)->next, n = pos->next; pos != (head); \
         pos = n, n = pos->next)

 /**
  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
  * @pos:    the &struct list_head to use as a loop cursor.
  * @n:        another &struct list_head to use as temporary storage
  * @head:    the head for your list.
  */
 #define list_for_each_prev_safe(pos, n, head) \
     for (pos = (head)->prev, n = pos->prev; \
          pos != (head); \
          pos = n, n = pos->prev)

 /**
  * list_for_each_entry    -    iterate over list of given type
  * @pos:    the type * to use as a loop cursor.
  * @head:    the head for your list.
  * @member:    the name of the list_struct within the struct.
  */
 #define list_for_each_entry(pos, head, member)                \
     for (pos = list_entry((head)->next, typeof(*pos), member);    \
          &pos->member != (head);     \
          pos = list_entry(pos->member.next, typeof(*pos), member))

 /**
  * list_for_each_entry_reverse - iterate backwards over list of given type.
  * @pos:    the type * to use as a loop cursor.
  * @head:    the head for your list.
  * @member:    the name of the list_struct within the struct.
  */
 #define list_for_each_entry_reverse(pos, head, member)            \
     for (pos = list_entry((head)->prev, typeof(*pos), member);    \
          &pos->member != (head);     \
          pos = list_entry(pos->member.prev, typeof(*pos), member))

 /**
  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
  * @pos:    the type * to use as a start point
  * @head:    the head of the list
  * @member:    the name of the list_struct within the struct.
  *
  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
  */
 #define list_prepare_entry(pos, head, member) \
     ((pos) ? : list_entry(head, typeof(*pos), member))

 /**
  * list_for_each_entry_continue - continue iteration over list of given type
  * @pos:    the type * to use as a loop cursor.
  * @head:    the head for your list.
  * @member:    the name of the list_struct within the struct.
  *
  * Continue to iterate over list of given type, continuing after
  * the current position.
  */
 #define list_for_each_entry_continue(pos, head, member)         \
     for (pos = list_entry(pos->member.next, typeof(*pos), member);    \
          &pos->member != (head);    \
          pos = list_entry(pos->member.next, typeof(*pos), member))

 /**
  * list_for_each_entry_continue_reverse - iterate backwards from the given point
  * @pos:    the type * to use as a loop cursor.
  * @head:    the head for your list.
  * @member:    the name of the list_struct within the struct.
  *
  * Start to iterate over list of given type backwards, continuing after
  * the current position.
  */
 #define list_for_each_entry_continue_reverse(pos, head, member)        \
     for (pos = list_entry(pos->member.prev, typeof(*pos), member);    \
          &pos->member != (head);    \
          pos = list_entry(pos->member.prev, typeof(*pos), member))

 /**
  * list_for_each_entry_from - iterate over list of given type from the current point
  * @pos:    the type * to use as a loop cursor.
  * @head:    the head for your list.
  * @member:    the name of the list_struct within the struct.
  *
  * Iterate over list of given type, continuing from current position.
  */
 #define list_for_each_entry_from(pos, head, member)             \
     for (; &pos->member != (head);    \
          pos = list_entry(pos->member.next, typeof(*pos), member))

 /**
  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
  * @pos:    the type * to use as a loop cursor.
  * @n:        another type * to use as temporary storage
  * @head:    the head for your list.
  * @member:    the name of the list_struct within the struct.
  */
 #define list_for_each_entry_safe(pos, n, head, member)            \
     for (pos = list_entry((head)->next, typeof(*pos), member),    \
         n = list_entry(pos->member.next, typeof(*pos), member);    \
          &pos->member != (head);                     \
          pos = n, n = list_entry(n->member.next, typeof(*n), member))

 /**
  * list_for_each_entry_safe_continue - continue list iteration safe against removal
  * @pos:    the type * to use as a loop cursor.
  * @n:        another type * to use as temporary storage
  * @head:    the head for your list.
  * @member:    the name of the list_struct within the struct.
  *
  * Iterate over list of given type, continuing after current point,
  * safe against removal of list entry.
  */
 #define list_for_each_entry_safe_continue(pos, n, head, member)         \
     for (pos = list_entry(pos->member.next, typeof(*pos), member),         \
         n = list_entry(pos->member.next, typeof(*pos), member);        \
          &pos->member != (head);                        \
          pos = n, n = list_entry(n->member.next, typeof(*n), member))

 /**
  * list_for_each_entry_safe_from - iterate over list from current point safe against removal
  * @pos:    the type * to use as a loop cursor.
  * @n:        another type * to use as temporary storage
  * @head:    the head for your list.
  * @member:    the name of the list_struct within the struct.
  *
  * Iterate over list of given type from current point, safe against
  * removal of list entry.
  */
 #define list_for_each_entry_safe_from(pos, n, head, member)             \
     for (n = list_entry(pos->member.next, typeof(*pos), member);        \
          &pos->member != (head);                        \
          pos = n, n = list_entry(n->member.next, typeof(*n), member))

 /**
  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
  * @pos:    the type * to use as a loop cursor.
  * @n:        another type * to use as temporary storage
  * @head:    the head for your list.
  * @member:    the name of the list_struct within the struct.
  *
  * Iterate backwards over list of given type, safe against removal
  * of list entry.
  */
 #define list_for_each_entry_safe_reverse(pos, n, head, member)        \
     for (pos = list_entry((head)->prev, typeof(*pos), member),    \
         n = list_entry(pos->member.prev, typeof(*pos), member);    \
          &pos->member != (head);                     \
          pos = n, n = list_entry(n->member.prev, typeof(*n), member))

 /**
  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
  * @pos:    the loop cursor used in the list_for_each_entry_safe loop
  * @n:        temporary storage used in list_for_each_entry_safe
  * @member:    the name of the list_struct within the struct.
  *
  * list_safe_reset_next is not safe to use in general if the list may be
  * modified concurrently (eg. the lock is dropped in the loop body). An
  * exception to this is if the cursor element (pos) is pinned in the list,
  * and list_safe_reset_next is called after re-taking the lock and before
  * completing the current iteration of the loop body.
  */
 #define list_safe_reset_next(pos, n, member)                \
     n = list_entry(pos->member.next, typeof(*pos), member)

 #endif

DEMO

 #include <stdio.h>
 #include <stdlib.h>
 #include "list.h" // 包含头文件

 typedef struct LIST_DEMO_ST
 {
     int data;
     struct list_head node; // 必须包含
 }LIST_DEMO_ST;

 int main()
 {
     ;

     // 创建list头,并初始化
     struct list_head listHead;
     INIT_LIST_HEAD(&listHead);

     // 添加节点
     ; i < ; i++)
     {
         LIST_DEMO_ST *new = (LIST_DEMO_ST *)malloc(sizeof(LIST_DEMO_ST));
         new->data = i;
         list_add(&(new->node), &listHead);
     }

     LIST_DEMO_ST *pos = NULL;
     LIST_DEMO_ST *n = NULL;

     // 遍历链表
     list_for_each_entry_safe(pos, n, &listHead, node)
     {
         printf("data:%d\n", pos->data);

         list_del_init(&(pos->node));
         free(pos);
         pos = NULL;
     }

     ;
 }

linux内核神级list的更多相关文章

  1. 现在的 Linux 内核和 Linux 2.6 的内核有多大区别?

    作者:larmbr宇链接:https://www.zhihu.com/question/35484429/answer/62964898来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转 ...

  2. Linux内核调用SPI平台级驱动_实现OLED的显示功能

    Linux内核调用SPI驱动_实现OLED显示功能 0. 导语 进入Linux的世界,发现真的是无比的有趣,也发现搞Linux驱动从底层嵌入式搞起真的是很有益处.我们在单片机.DSP这些无操作系统的裸 ...

  3. linux内核级同步机制--futex

    在面试中关于多线程同步,你必须要思考的问题 一文中,我们知道glibc的pthread_cond_timedwait底层是用linux futex机制实现的. 理想的同步机制应该是没有锁冲突时在用户态 ...

  4. Linux内核--基于Netfilter的内核级包过滤防火墙实现

    测试内核版本:Linux Kernel 2.6.35----Linux Kernel 3.2.1 原创作品,转载请标明http://blog.csdn.net/yming0221/article/de ...

  5. linux内核地址mapping

    linux内核采用页式存储管理,虚拟地址空间划分成固定大小的页面,由MMU(memory manager unit)在运行时将virtual address mapping to (或者说是变化成)某 ...

  6. 调皮的程序员:Linux之父雕刻在Linux内核中的故事

    本文内容由公众号“格友”原创分享. 1.引言   (不羁的大神,连竖中指都这么帅) 因为LINUX操作系统的流行,Linus 已经成为地球人都知道的名人.虽然大家可能都听过钱钟书先生的名言:“假如你吃 ...

  7. Linux 内核引导选项简介

    Linux 内核引导选项简介 作者:金步国 连接地址:http://www.jinbuguo.com/kernel/boot_parameters.html 参考参数:https://www.cnbl ...

  8. Linux内核DTB文件启动的几种方式

      版权:  凌云物网智科实验室< www.iot-yun.com > 声明:  本文档由凌云物网智科实验室郭工编著! 作者:  郭文学< QQ: 281143292  guowen ...

  9. Linux 内核引导参数简介

    概述 内核引导参数大体上可以分为两类:一类与设备无关.另一类与设备有关.与设备有关的引导参数多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导参数.比如,如果你想知道可以向 AHA ...

随机推荐

  1. 使用iostat分析IO性能

    对于I/O-bond类型的进程,我们经常用iostat工具查看进程IO请求下发的数量.系统处理IO请求的耗时,进而分析进程与操作系统的交互过程中IO方面是否存在瓶颈. 下面通过iostat命令使用实例 ...

  2. c#强制执行内存回收

    [DllImport("psapi.dll")] private static extern int EmptyWorkingSet(int hProcess); GC.Colle ...

  3. IIS管理器的快捷方式在哪里?

    两种重新创建IIS快捷方式的方法,希望对大家有所帮助 1.首先需要明白它本来就是个快捷方式,所以可以重新创建一个新的快捷方式:右击桌面>>新建>>快捷方式.弹出创建快捷方式向导 ...

  4. Nuget 摘录

    1 , Creating and Publishing a Package     https://docs.nuget.org/create/creating-and-publishing-a-pa ...

  5. unity, 挖洞特效

    想模仿这个游戏的挖洞特效: 思路: 效果: 代码下载:http://pan.baidu.com/s/1kUN8goZ

  6. Q4: Two Sum

    问题描述: Given an array of integers, find two numbers such that they add up to a specific target number ...

  7. android dimens 读取 px&dp问题

    1.dimens.xml文件:     <resources> <dimen name="area_margin_top">100dp</dimen& ...

  8. lambda 的使用汇总

    d=lambda x:x+1print(d(10))lambda 相当于一个轻量函数返回 d=lambda x:x+1 if x>0 else "error"print(d( ...

  9. HTTP API 设计指南(中文版) restfull

    http://www.css88.com/archives/5121 目录 基础 总是使用TLS 在Accepts头中带上版本号 通过Etags支持缓存 用Request-Ids追踪请求 用Range ...

  10. encodeURI(encodeURI(name)) ;文件上传

    window.location.href = xxxx?a=encodeURI(encodeURI(name)) ;// 编码name是中文,页面部分需要编码两次name = java.net.URL ...