geeksforgeeks@ Minimum Points To Reach Destination (Dynamic Programming)
http://www.practice.geeksforgeeks.org/problem-page.php?pid=91
Minimum Points To Reach Destination
Given a grid with each cell consisting of positive, negative or no points i.e, zero points. We can move across a cell only if we have positive points ( > 0 ). Whenever we pass through a cell, points in that cell are added to our overall points. We need to find minimum initial points to reach cell (m-1, n-1) from (0, 0) by following these certain set of rules :
1.From a cell (i, j) we can move to (i+1, j) or (i, j+1).
2.We cannot move from (i, j) if your overall points at (i, j) is <= 0.
3.We have to reach at (n-1, m-1) with minimum positive points i.e., > 0.
Example:
Input: points[m][n] = { {-2, -3, 3},
{-5, -10, 1},
{10, 30, -5}
};
Output: 7
Explanation:
7 is the minimum value to reach destination with
positive throughout the path. Below is the path.
(0,0) -> (0,1) -> (0,2) -> (1, 2) -> (2, 2)
We start from (0, 0) with 7, we reach(0, 1)
with 5, (0, 2) with 2, (1, 2) with 5, (2, 2)
with and finally we have 1 point (we needed
greater than 0 points at the end).
Input:
The first line contains an integer 'T' denoting the total number of test cases.
In each test cases, the first line contains two integer 'R' and 'C' denoting the number of rows and column of array.
The second line contains the value of the array i.e the grid, in a single line separated by spaces in row major order.
Output:
Print the minimum initial points to reach the bottom right most cell in a separate line.
Constraints:
1 ≤ T ≤ 30
1 ≤ R,C ≤ 10
-30 ≤ A[R][C] ≤ 30
Example:
Input:
1
3 3
-2 -3 3 -5 -10 1 10 30 -5
Output:
7
import java.util.*;
import java.lang.*;
import java.io.*; class GFG { public static int func(int[][] arr) { int r = arr.length, c = arr[0].length;
int[][] dp = new int[r][c]; dp[r-1][c-1] = (1 + arr[r-1][c-1] <= 0)? 1: (1 + arr[r-1][c-1]);
for(int j=c-2; j>=0; --j) {
dp[r-1][j] = (dp[r-1][j+1] + arr[r-1][j] <= 0)? 1: (dp[r-1][j+1] + arr[r-1][j]);
} for(int i=r-2; i>=0; --i) {
dp[i][c-1] = (dp[i+1][c-1] + arr[i][c-1] <= 0)? 1: (dp[i+1][c-1] + arr[i][c-1]);
} for(int i=r-2; i>=0; --i) {
for(int j=c-2; j>=0; --j) {
int mmin = Integer.MAX_VALUE;
if(dp[i+1][j] + arr[i][j] <= 0 || dp[i][j+1] + arr[i][j] <= 0) mmin = 1;
else mmin = Math.min(mmin, Math.min(dp[i+1][j], dp[i][j+1]) + arr[i][j]);
dp[i][j] = mmin;
}
} return dp[0][0];
} public static void main (String[] args) {
Scanner in = new Scanner(System.in);
int times = in.nextInt(); while(times > 0) {
--times; int r = in.nextInt(), c = in.nextInt();
int[][] arr = new int[r][c];
for(int i=0; i<r; ++i) {
for(int j=0; j<c; ++j) {
arr[i][j] = in.nextInt();
arr[i][j] *= -1;
}
} System.out.println(func(arr));
}
}
}
geeksforgeeks@ Minimum Points To Reach Destination (Dynamic Programming)的更多相关文章
- [LeetCode] 64. Minimum Path Sum_Medium tag: Dynamic Programming
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- [LeetCode] 45. Jump Game II_ Hard tag: Dynamic Programming
Given an array of non-negative integers, you are initially positioned at the first index of the arra ...
- [Optimization] Advanced Dynamic programming
这里主要是较为详细地理解动态规划的思想,思考一些高质量的案例,同时也响应如下这么一句口号: “迭代(regression)是人,递归(recursion)是神!” Video series for D ...
- Algo: Dynamic programming
Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...
- 算法导论学习-Dynamic Programming
转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...
- Dynamic Programming: From novice to advanced
作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...
- HDU-4972 A simple dynamic programming problem
http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...
- 70. Climbing Stairs(easy, 号称 Dynamic Programming 天下第一题)
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- [LeetCode] 132. Palindrome Partitioning II_ Hard tag: Dynamic Programming
Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...
随机推荐
- 【转】Android横竖屏切换问题
Android横竖屏切换总结(Android资料) Android横竖屏要解决的问题应该就两个: 一.布局问题 二.重新载入问题 1.布局问题:如果不想让软件在横竖屏之间切换,最简单的办法就是在项目的 ...
- hadoop hadoop-0.20.2-cdh3u4升级
[hadoop@lab02 ~]$ uname -aLinux lab02 2.6.18-194.el5 #1 SMP Tue Mar 16 21:52:39 EDT 2010 x86_64 x86_ ...
- D3D渲染流程--转载
http://www.cnblogs.com/ixnehc/articles/1282350.html 先从最基础的写起吧,关于Device的渲染流程. D3D9的Device就是D3D给我们提供的一 ...
- 如何直接在github网站上更新你fork的repo?
玩过github的人一定会在你自己的账号上fork了一些github开源项目.这些开源项目往往更新比较活跃,你今天fork用到你自己的项目中去了,过几个星期这个fork的origin可能有一些bugf ...
- Qt之QHeaderView排序
简述 在Windows中我们经常会遇到表头排序,比如可以对文件按照名称.修改日期.类型.大小进行排序,方便我们统一的归类查找. Qt中,我们可以通过点击表头来对QTableView或QTreeView ...
- UVa 11134 (区间上的贪心) Fabled Rooks
这道题真是WA得我心力交瘁,好讨厌的感觉啊! 简直木有写题解的心情了 题意: n×n的棋盘里,放置n个车,使得任意两车不同行且不同列,且第i个车必须放在给定的第i个矩形范围内.输出一种方案,即每个车的 ...
- Drawable和Bitmap的区别
Bitmap - 称作位图,一般位图的文件格式后缀为bmp,当然编码器也有很多如RGB565.RGB888.作为一种逐像素的显示对象执行效率高,但是缺点也很明显存储效率低.我们理解为一种存储对象比较好 ...
- mongodb主从复制
1)主服务器--master --port 20001 2)从服务器--slave --source 127.0.0.1:20001 --port 20002 注释:--master 以主服务器形式启 ...
- How to: Modify a Project System So That Projects Load in Multiple Versions of Visual Studio
http://msdn.microsoft.com/en-us/library/hh266706(v=VS.110).aspx
- I.MX6 shutdown by software
/************************************************************************ * I.MX6 shutdown by softwa ...