传送门

模板不解释。

——代码

 #include <cstdio>
#include <cstring>
#define LL long long int n;
LL k;
const int p = 1e9 + ; struct Matrix
{
LL a[][];
Matrix()
{
memset(a, , sizeof(a));
}
}; inline Matrix operator * (const Matrix x, const Matrix y)
{
Matrix ans;
int i, j, k;
for(i = ; i < n; i++)
for(j = ; j < n; j++)
for(k = ; k < n; k++)
ans.a[i][j] = (ans.a[i][j] + x.a[i][k] * y.a[k][j]) % p;
return ans;
} int main()
{
int i, j;
Matrix ans, trs;
scanf("%d %lld", &n, &k);
for(i = ; i < n; i++) ans.a[i][i] = ;
for(i = ; i < n; i++)
for(j = ; j < n; j++)
scanf("%lld", &trs.a[i][j]);
while(k)
{
if(k & ) ans = ans * trs;
trs = trs * trs;
k >>= ;
}
for(i = ; i < n; i++)
{
for(j = ; j < n; j++) printf("%d ", ans.a[i][j]);
puts("");
}
return ;
}

[luoguP3390]【模板】矩阵快速幂的更多相关文章

  1. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

  2. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  3. 3990 [模板]矩阵快速幂 洛谷luogu

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  4. 【洛谷 p3390】模板-矩阵快速幂(数论)

    题目:给定n*n的矩阵A,求A^k. 解法:利用矩阵乘法的定义和快速幂解答.注意用负数,但是数据太弱没有卡到我......(P.S.不要在 typedef long long  LL; 前使用 LL. ...

  5. POJ_Fibonacci POJ_3070(矩阵快速幂入门题,附上自己写的矩阵模板)

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10521   Accepted: 7477 Descri ...

  6. poj 3070 Fibonacci (矩阵快速幂乘/模板)

    题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...

  7. Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)

    Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...

  8. Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)

    补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...

  9. POJ3070 矩阵快速幂模板

    题目:http://poj.org/problem?id=3070 矩阵快速幂模板.mod写到乘法的定义部分就行了. 别忘了 I ( ) 和 i n i t ( ) 要传引用! #include< ...

  10. 矩阵快速幂模板(pascal)

    洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格 ...

随机推荐

  1. JEECMSv9.3在金蝶Apusic中间件中无法找到首页的问题处理

    在金蝶中间件中启动JEECMS,访问首页显示"页面找不到"信息.而访问后台及其他页面均可正常访问. 经代码查找,发现前台页面的所有地址是通过"com.jeecms.cms ...

  2. AJPFX实列判断一个字符串是不是对称字符串

    import java.util.Scanner; /** *        判断一个字符串是否是对称字符串 */ public class StringDemo { public static vo ...

  3. 维控PLC与电流变送器modbus通讯获取电流变送器数据

    2018-09-2319:28:01 今天本来要用单片机来做这个项目的,但是失败了.... 所以我又拿出了PLC来搞,也是相当之复杂,查了很多资料终于做出而来了. 今天还有事,赶紧临时备份总结一波

  4. Saleae Logic添加NEC IR协议

    一.下载需要用到的代码 Git clone https://github.com/LiveOverflow/NECAnalyzer.git git clone --recursive https:// ...

  5. 11 Hash tables

    11 Hash tables    Many applications require a dynamic set that supports only the dictionary operatio ...

  6. 一致性hash学习

    一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈 ...

  7. Android 计算view 的高度

    上午在做一个QuickAction里嵌套一个ListView,在Demo运行没事,结果引入到我的项目里,发现我先让它在Button上面,结果是无视那个Button的高度,这很明显,就是那个Button ...

  8. IE和DOM事件流、普通事件和绑定事件的区别

    IE和DOM事件流的区别 IE采用冒泡型事件 Netscape(网络信息浏览器)使用捕获型事件 DOM使用先捕获后冒泡型事件 示例: <body> <div> <butt ...

  9. 迅为i.MX6UL核心板ARMCortex-A7单核NXP飞思卡尔工控行业Imx6核心板

    iMX6UL核心板小巧精致,尺寸仅38mm*42mm:CPU型号iMX6UL@ 528MHz ARM Cortex-A7架构 :内存:512M DDR :存储:8G EMMC,低功耗,性能强大,性价比 ...

  10. Python界面编程之六----布局

    布局(转载于–学点编程吧)通过实践可知采用了布局之后能够让我们的程序在使用上更加美观,不会随着窗体的大小发生改变而改变,符合我们的使用习惯. 绝对位置程序员以像素为单位指定每个小部件的位置和大小. 当 ...