Description


Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input


The input contains multiple test cases. Each test cases consists of some lines.

Line 1: Contains the integer k.

Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i ≤ k).

Output


Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input


2
8 7
11 9

Sample Output


31

Hint


All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

Source


POJ Monthly--2006.07.30, Static

参考代码

#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,x,n) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=1e6+10;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(b==0){
x=1;y=0;
d=a;
}else{
exgcd(b,a%b,d,y,x),y-=x*(a/b);
}
}
int a[N],r[N],n;
ll solve(){
ll ta=a[1],tr=r[1],x,y,d;
for(int i=2;i<=n;i++){
exgcd(ta,a[i],d,x,y);
if((r[i]-tr)%d) return -1;
x=(r[i]-tr)/d*x%(a[i]/d);
tr+=x*ta;ta=ta/d*a[i];
tr%=ta;
}
return tr>0?tr:tr+ta;
}
int main(){
while(~scanf("%d",&n)){
REP(i,1,n) a[i]=read(),r[i]=read();
Out(solve());
puts("");
}
return 0;
}

【POJ 2891】Strange Way to Express Integers(一元线性同余方程组求解)的更多相关文章

  1. POJ 2891 Strange Way to Express Integers (解一元线性方程组)

    求解一元线性同余方程组: x=ri(mod ai) i=1,2,...,k 解一元线性同余方程组的一般步骤:先求出前两个的解,即:x=r1(mod a1)     1x=r2(mod a2)     ...

  2. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  3. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  4. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  5. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  6. POJ-2891-Strange Way to Express Integers(线性同余方程组)

    链接: https://vjudge.net/problem/POJ-2891 题意: Elina is reading a book written by Rujia Liu, which intr ...

  7. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  8. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  9. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

随机推荐

  1. C++中virtual继承的深入理解

    今天专门看了一下虚继承的东西,以前都没怎么用过,具体如下:父类: 复制代码代码如下: class   CParent { .... }; 继承类的声明比较特别: class   CChild   :  ...

  2. zabbix被动模式和主动模式

    1 被动模式 zabbix默认采用被动模式.就是agent等待server采集数据. 在items中,type为zabbix agent就是指被动模式. 流程为:agent周期性收集数据,server ...

  3. 自适应的两端对齐:text-align:justify

    <!DOCTYPE HTML> <html> <head> <title>文本两端对齐 by hongchenok</title> < ...

  4. iOS 项目代码组织

    参考了很多系列,发现老外们都比较喜欢 group by type,这两个还不错: http://akosma.com/2009/07/28/code-organization-in-xcode-pro ...

  5. spring mvc URL忽略大小写

    @Configuration public class SpringWebConfig extends WebMvcConfigurationSupport { @Override public vo ...

  6. 解决IDEA Tomcat控制台乱码问题

    1.在Tomcat Server的配置中添加一句命令: 神秘代码: -Dfile.encoding=UTF-8 重启Tomcat,ok. 如果还不行,则需要: 1.在Settings中修改文件编码 2 ...

  7. obj.style 和currentstyle 等区别

    版权声明:本文为博主原创文章,未经博主允许不得转载. 获取样式  obj.style   和currentstyle  等区别   obj.style只能获得内嵌样式(inline Style)就是写 ...

  8. 031_spark架构原理

    spark核心组件 driver master worker executor task(只有task是线程) 核心组件的原理图解

  9. ArrayList不同循环方式

    一: ArrayList<String> list = new ArrayList<String>();  list.add("1");  list.add ...

  10. 客户端配置snmpd

    [root@ localhost]#yum install net-snmp (3)安装后打开默认的/etc/snmp/snmpd.conf文件,更改如下配置: 1) 查找以下代码: # sec.na ...