Description


Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input


The input contains multiple test cases. Each test cases consists of some lines.

Line 1: Contains the integer k.

Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i ≤ k).

Output


Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input


2
8 7
11 9

Sample Output


31

Hint


All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

Source


POJ Monthly--2006.07.30, Static

参考代码

#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,x,n) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=1e6+10;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(b==0){
x=1;y=0;
d=a;
}else{
exgcd(b,a%b,d,y,x),y-=x*(a/b);
}
}
int a[N],r[N],n;
ll solve(){
ll ta=a[1],tr=r[1],x,y,d;
for(int i=2;i<=n;i++){
exgcd(ta,a[i],d,x,y);
if((r[i]-tr)%d) return -1;
x=(r[i]-tr)/d*x%(a[i]/d);
tr+=x*ta;ta=ta/d*a[i];
tr%=ta;
}
return tr>0?tr:tr+ta;
}
int main(){
while(~scanf("%d",&n)){
REP(i,1,n) a[i]=read(),r[i]=read();
Out(solve());
puts("");
}
return 0;
}

【POJ 2891】Strange Way to Express Integers(一元线性同余方程组求解)的更多相关文章

  1. POJ 2891 Strange Way to Express Integers (解一元线性方程组)

    求解一元线性同余方程组: x=ri(mod ai) i=1,2,...,k 解一元线性同余方程组的一般步骤:先求出前两个的解,即:x=r1(mod a1)     1x=r2(mod a2)     ...

  2. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  3. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  4. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  5. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  6. POJ-2891-Strange Way to Express Integers(线性同余方程组)

    链接: https://vjudge.net/problem/POJ-2891 题意: Elina is reading a book written by Rujia Liu, which intr ...

  7. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  8. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  9. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

随机推荐

  1. C#中自定义类数组和结构数组的使用

    如有雷同,不胜荣幸,若转载,请注明 C#中自定义类数组和结构数组的使用 最近在很多项目中发现很多时候给定的数组要实现某个逻辑或处理很是麻烦,一维数组,二维数组,,,等等需要经过n多转换,还不如自己写一 ...

  2. python实现判断素数

    import math def is_prime_1(n): if n <= 1: return False for i in range(2, int(math.sqrt(n) + 1)): ...

  3. 洛谷 P4317 花神的数论题 || bzoj3209

    https://www.lydsy.com/JudgeOnline/problem.php?id=3209 https://www.luogu.org/problemnew/show/P4317 设c ...

  4. 481 Magical String 魔力字符串

    详见:https://leetcode.com/problems/magical-string/description/ C++: 方法一: class Solution { public: int ...

  5. 正则表达式test报错 is not a function

    var reg = "/^1[34578]\d{9}$/"; //错误格式,这是一个字符串 var reg2 = /^1[34578]\d{9}$/; //正确格式 reg .te ...

  6. RHEL 6.5----apr-util1.6执行make时报错

    报错信息 ]: Entering directory `/usr/local/src/apr-util-' /bin//build-/libtool --silent --mode=compile / ...

  7. FFmpegUtil

    这几天没事研究音频玩 比如 X配音app的配音功能 录一段 pcm或者wav格式的文件 替换mp4指定位置的音频刚开始卡在 pcm混合以及pcm指定位置插入.思路 一段段的视频进行切割 用到MP4Co ...

  8. 事件对象(示例、封装函数EventUtil())

    事件对象 什么是事件对象? 在触发DOM上的事件时都会产生一个对象. 事件对象event 1.DOM中的事件对象 (1)\type属性用于获取事件类型 (2)\target属性用于获取事件目标 (3) ...

  9. iOS 网络开发

    http://www.cnblogs.com/kenshincui/p/4042190.html

  10. [Java 8] (9) Lambda表达式对递归的优化(下) - 使用备忘录模式(Memoization Pattern) .

    使用备忘录模式(Memoization Pattern)提高性能 这个模式说白了,就是将需要进行大量计算的结果缓存起来,然后在下次需要的时候直接取得就好了.因此,底层只需要使用一个Map就够了. 但是 ...