Description


Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input


The input contains multiple test cases. Each test cases consists of some lines.

Line 1: Contains the integer k.

Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i ≤ k).

Output


Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input


2
8 7
11 9

Sample Output


31

Hint


All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

Source


POJ Monthly--2006.07.30, Static

参考代码

#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,x,n) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=1e6+10;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(b==0){
x=1;y=0;
d=a;
}else{
exgcd(b,a%b,d,y,x),y-=x*(a/b);
}
}
int a[N],r[N],n;
ll solve(){
ll ta=a[1],tr=r[1],x,y,d;
for(int i=2;i<=n;i++){
exgcd(ta,a[i],d,x,y);
if((r[i]-tr)%d) return -1;
x=(r[i]-tr)/d*x%(a[i]/d);
tr+=x*ta;ta=ta/d*a[i];
tr%=ta;
}
return tr>0?tr:tr+ta;
}
int main(){
while(~scanf("%d",&n)){
REP(i,1,n) a[i]=read(),r[i]=read();
Out(solve());
puts("");
}
return 0;
}

【POJ 2891】Strange Way to Express Integers(一元线性同余方程组求解)的更多相关文章

  1. POJ 2891 Strange Way to Express Integers (解一元线性方程组)

    求解一元线性同余方程组: x=ri(mod ai) i=1,2,...,k 解一元线性同余方程组的一般步骤:先求出前两个的解,即:x=r1(mod a1)     1x=r2(mod a2)     ...

  2. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  3. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  4. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  5. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  6. POJ-2891-Strange Way to Express Integers(线性同余方程组)

    链接: https://vjudge.net/problem/POJ-2891 题意: Elina is reading a book written by Rujia Liu, which intr ...

  7. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  8. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  9. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

随机推荐

  1. Nginx的location配置概述【转】

    语法规则: location [=|~|~*|^~] /uri/ { … } = 开头表示精确匹配^~ 开头表示uri以某个常规字符串开头,理解为匹配url路径即可.nginx不对url做编码,因此请 ...

  2. Java | 基础归纳 | java时间格式处理总结

    https://www.cnblogs.com/edwardlauxh/archive/2010/03/21/1918615.html https://blog.csdn.net/xsj_blog/a ...

  3. win32 指令大全

    指令类型 助记符 (带*为特权指令) 对标志寄存器的影响 备注 说明 举例 ZF CF PF SF OF AF DF IF TF 数据传送类 数据传送 MOV 不影响标志位 Move MOV r/m3 ...

  4. Qt基本应用

    1 使用方式 在qt designer中直接设计图形界面,然后使用pyGUI转换成py文件. 可以发现,转换的文件为一个class.并不是一个完整的程序(运行时无法出现窗口).这个类名字是Ui_Mai ...

  5. Contextual Action bar(3) 两个示例

    一.通过activity启动Context Action Bar 1.主java public class ActivityActionModeFrgmt extends Fragment imple ...

  6. Include,Forward,sendRedirct的区别(转)

    三者在servlet中的最大区别是: Include和Forward:将当前请求转到另外一个JSP或者servlet处理. sendRedirct:将当前请求返回到浏览器,带上要redirect的UR ...

  7. oracle PL、SQL(概念)

    一.PL/SQL简介. Oracle PL/SQL语言(Procedural Language/SQL)是结合了结构化查询和Oracle自身过程控制为一体的强大语言,PL/SQL不但支持更多的数据类型 ...

  8. PHP设计模式 观察者模式(Observer)

    定义 当一个对象状态发生改变时,依赖它的对象全部会收到通知,并自动更新. 模式要点 Event:事件 Trigger() 触发新的事件 abstract EventGenerator 事件产生者 Fu ...

  9. DOCTYPE详解

    什么是DTD? SGML引入了文档类型的概念,并由此引入了文档类型定义(Document Type Definition: DTD).文档类型定义 (DTD) 实际上就是一套关于标记符的语法规则,它包 ...

  10. 在WIN7下解决coursera视频无法播放问题

    https://blog.csdn.net/u012509485/article/details/78459584在WIN7下解决coursera视频无法播放问题2019/1/20 23:18 最近C ...