【POJ 2891】Strange Way to Express Integers(一元线性同余方程组求解)
Description
Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:
Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.
“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”
Since Elina is new to programming, this problem is too difficult for her. Can you help her?
Input
The input contains multiple test cases. Each test cases consists of some lines.
Line 1: Contains the integer k.
Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i ≤ k).
Output
Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.
Sample Input
2
8 7
11 9
Sample Output
31
Hint
All integers in the input and the output are non-negative and can be represented by 64-bit integral types.
Source
POJ Monthly--2006.07.30, Static
参考代码
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,x,n) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=1e6+10;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(b==0){
x=1;y=0;
d=a;
}else{
exgcd(b,a%b,d,y,x),y-=x*(a/b);
}
}
int a[N],r[N],n;
ll solve(){
ll ta=a[1],tr=r[1],x,y,d;
for(int i=2;i<=n;i++){
exgcd(ta,a[i],d,x,y);
if((r[i]-tr)%d) return -1;
x=(r[i]-tr)/d*x%(a[i]/d);
tr+=x*ta;ta=ta/d*a[i];
tr%=ta;
}
return tr>0?tr:tr+ta;
}
int main(){
while(~scanf("%d",&n)){
REP(i,1,n) a[i]=read(),r[i]=read();
Out(solve());
puts("");
}
return 0;
}
【POJ 2891】Strange Way to Express Integers(一元线性同余方程组求解)的更多相关文章
- POJ 2891 Strange Way to Express Integers (解一元线性方程组)
求解一元线性同余方程组: x=ri(mod ai) i=1,2,...,k 解一元线性同余方程组的一般步骤:先求出前两个的解,即:x=r1(mod a1) 1x=r2(mod a2) ...
- poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 9472 ...
- poj——2891 Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 16839 ...
- [POJ 2891] Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 10907 ...
- POJ 2891 Strange Way to Express Integers(拓展欧几里得)
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...
- POJ-2891-Strange Way to Express Integers(线性同余方程组)
链接: https://vjudge.net/problem/POJ-2891 题意: Elina is reading a book written by Rujia Liu, which intr ...
- poj 2891 Strange Way to Express Integers(中国剩余定理)
http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd
http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法
http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...
随机推荐
- POJ 1177 Picture(线段树 扫描线 离散化 求矩形并面积)
题目原网址:http://poj.org/problem?id=1177 题目中文翻译: 解题思路: 总体思路: 1.沿X轴离散化建树 2.按Y值从小到大排序平行与X轴的边,然后顺序处理 如果遇到矩形 ...
- C++11 多线程相关的头文件
C++11 新标准中引入了四个头文件来支持多线程编程,他们分别是<atomic> ,<thread>,<mutex>,<condition_variable& ...
- JS获取屏幕的大小
<html><script>function a(){document.write("屏幕分辨率为:"+screen.width+"*" ...
- UWP 页面跳转传值
如果涉及到页面跳转,一般用Frame这个控件来管理不同的页面. <Grid Name="RootGrid"> <Frame Name="RootFram ...
- python_11(网络编程)
第1章 ucp协议 1.1 特性 1.2 缺陷 1.3 UDP协议实时通信 第2章 socket的更多方法 2.1 面向锁的套接字方法 2.1.1 blocking设置非阻塞 2.1.2 Blocki ...
- Linux常用命令——tac、bc
1.从文件尾到文件头一页一页的显示内容 tac xxx.log |more //tac命令与cat命令相反,从文件尾开始读文件 2.shell下科学计算工具bc echo "scale=5; ...
- PowerShell~发布你的mvc网站
通过使用ps加上msbuild可以方便的编译你的.net应用程序,并且可以把它发布到你的磁盘上,部署非常方例! 我们在c盘添加一个hello网站,解决方案名是hello.sln,它的网站是hello. ...
- 如何轻松实现MySQL数据库的读写分离和负载均衡?
配置好了 Mysql 的主从复制结构后,我们希望实现读写分离,把读操作分散到从服务器中,并且对多个从服务器能实现负载均衡.读写分离和负载均衡是 Mysql 集群的基础需求,MaxScale 就可以帮着 ...
- 【转】java序列化一定要应该注意的6个事项!
1.如果子类实现Serializable接口而父类未实现时,父类不会被序列化,但此时父类必须有个无参构造方法,否则会抛InvalidClassException异常. 2.静态变量不会被序列化,那是类 ...
- JS进阶-特殊形式的函数-内部私有函数
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...