[Poj2411]Mondriaan's Dream(状压dp)(插头dp)
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 18096 | Accepted: 10357 |
Description
Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!
Input
Output
Sample Input
Sample Output
题意:
给出n * m的棋盘,问用1 * 2的骨牌铺满棋盘的方案数。
分析:
棋盘n,m很小,可以想到状压dp。一般的状压dp是枚举上一维的状态和当前这维状态然后转移。
在蓝书上P384页,也有一种解法。但是网上有另一种做法:http://blog.csdn.net/sf____/article/details/15026397
十分感谢博主的思路。
思路是这样的:
依然定义f[i][j][k],i为第i行,j为第第j列。k为二进制数,1 - k - 1位为当前行状态,k - m 为上一行状态,当前更新把第k位从上一行更新成当前行状态。
二进制中0表示下一行这个位置可以放数(即当前位置不放或者横着放),1表示下一行这个位置不可以放数(即当前位置竖着放)
可以得到dp状态:
dp[i][j][k ^ (1 << j)] += dp[i][j - 1][k]; -- 1 //竖着放 或者不放,因为不可能连续两行不放,所以k ^ (1 << j)和k相同位置必须有一位为1
dp[i][j][k ^ (1 << (j - 1))] += dp[i][j - 1][k]; --2 //从前一格竖着放的转移到当前位置横着放的 条件:当前这位上一格必须放了
因为i 和 j其实是刷表的,可以转移成dp[2][k];就可以了
AC代码:
# include <iostream>
# include <cstdio>
# include <cstring>
using namespace std;
const int N = << ;
long long dp[][N];
int n,m,data;
int main(){
while(~scanf("%d %d",&m,&n) && (n + m)){
data = ( << m);
if(m > n)swap(n,m);
int now = ;
memset(dp[now],,sizeof dp[now]);
dp[now][] = ;
for(int i = ;i < n;i++){
for(int j = ;j < m;j++){
now ^= ;
memset(dp[now],,sizeof dp[now]);
for(int k = ;k < data;k++)if(dp[now ^ ][k]){
dp[now][k ^ ( << j)] += dp[now ^ ][k];
if(j && (k & ( << (j - ))) && !(k & ( << j)))
dp[now][k ^ ( << (j - ))] += dp[now ^ ][k];
}
}
}
printf("%lld\n",dp[now][]);
}
}
[Poj2411]Mondriaan's Dream(状压dp)(插头dp)的更多相关文章
- [poj2411] Mondriaan's Dream (状压DP)
状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...
- $POJ2411\ Mondriaan's\ Dream$ 状压+轮廓线$dp$
传送门 Sol 首先状压大概是很容易想到的 一般的做法大概就是枚举每种状态然后判断转移 但是这里其实可以轮廓线dp 也就是从上到下,从左到右地放方块 假设我们现在已经放到了$(i,j)$这个位置 那么 ...
- POJ 2411 Mondriaan's Dream ——状压DP 插头DP
[题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出 ...
- POJ 2411 Mondriaan's Dream -- 状压DP
题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...
- Poj 2411 Mondriaan's Dream(状压DP)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Description Squares and rectangles fascina ...
- POJ-2411 Mondriann's Dream (状压DP)
求把\(N*M(1\le N,M \le 11)\) 的棋盘分割成若干个\(1\times 2\) 的长方形,有多少种方案.例如当 \(N=2,M=4\)时,共有5种方案.当\(N=2,M=3\)时, ...
- P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp
正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...
- poj2411 Mondriaan's Dream (轮廓线dp、状压dp)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17203 Accepted: 991 ...
- poj2411 Mondriaan's Dream【状压DP】
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 20822 Accepted: 117 ...
随机推荐
- UGUI世界坐标转换为UI本地坐标
以下是实现hud跟随3D物体的脚本,只是测试用,不是开发中的代码,脚本挂在任意游戏物体上 demo下载 using UnityEngine; public class SceneFollowUI : ...
- 让idea调试不进入class文件中去
- Sql Server 中锁的概念(1)
Sql Server 中锁的概念 锁的概述 一. 为什么要引入锁 多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 丢失更新A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破 ...
- DNS查询过程
DNS查询过程 假设www.abc.com的主机要查询www.xyz.abc.com的服务器ip地址. 知识点 1.hosts文件:以静态映射的方式提供IP地址与主机名的对照表,类似ARP表 2.域: ...
- vscode 中文设置
修改设置 语言设置介绍: https://code.visualstudio.com/docs/getstarted/locales 按Ctrl + Shift + P打开命令调色板,然后开始键入“d ...
- VR技术在数据中心3D机房中的应用 (下)
VR技术在数据中心3D机房中的应用 (下) 前面给大家简单科普了一下VR的硬件设备以及VR在各个领域的应用,是不是觉得非常高大上?千言万语概括成一句话,VR能给用户带来前所未有的沉浸感和交互方式,让人 ...
- 解决普遍pc端公共底部永远在下面框架
<div style="width: 90%;height: 3000px;margin: 0 auto; background: red;"></div> ...
- luogu 1113 杂务--啥?最长路?抱歉,我不会
P1113 杂务 题目描述 John的农场在给奶牛挤奶前有很多杂务要完成,每一项杂务都需要一定的时间来完成它.比如:他们要将奶牛集合起来,将他们赶进牛棚,为奶牛清洗乳房以及一些其它工作.尽早将所有杂务 ...
- CF550 DIV3
A - Diverse Strings CodeForces - 1144A A string is called diverse if it contains consecutive (adjace ...
- java指令详解
Java是通过java虚拟机来装载和执行编译文件(class文件)的,java虚拟机通过命令java option 来启动,-option为虚拟机参数,通过这些参数可对虚拟机的运行状态进行调整. 一. ...