http://acm.hdu.edu.cn/showproblem.php?pid=1114

Problem Description
Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams. 
 
Output
Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.". 
 
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
发现自己不会举一反三  怎么这么笨
题目大意:
给你一个存钱罐开始的重量和装满的重量 然后是钱的种类
两个数分别表示前的价值和钱的重量  
求最小的钱数(当装满时)
分析:
就是背包   不过dp[i]给附成无穷大
然后计算最小值就行了
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
#include<stdlib.h> using namespace std; #define INF 0xfffffff
#define N 55000
int dp[N];
int main()
{
int T,s,e,m,t,w[N],v[N];
scanf("%d",&T);
while(T--)
{
memset(w,,sizeof(w));
memset(v,,sizeof(v));
scanf("%d %d",&s,&e);
m=e-s;
for(int i=;i<=m;i++)
dp[i]=INF;
scanf("%d",&t);
for(int i=;i<=t;i++)
{
scanf("%d %d",&w[i],&v[i]);
}
for(int i=;i<=t;i++)
{
for(int j=v[i];j<=m;j++)
{
if(dp[j]>dp[j-v[i]]+w[i])
dp[j]=dp[j-v[i]]+w[i];
}
}
if(dp[m]==INF)
printf("This is impossible.\n");
else
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[m]);
}
return ;
}

Piggy-Bank--hdu1114(完全背包)的更多相关文章

  1. 【bzoj1531】[POI2005]Bank notes 多重背包dp

    题目描述 Byteotian Bit Bank (BBB) 拥有一套先进的货币系统,这个系统一共有n种面值的硬币,面值分别为b1, b2,..., bn. 但是每种硬币有数量限制,现在我们想要凑出面值 ...

  2. hdu1114 完全背包

    题意:给出钱罐的重量,然后是每种钱的价值和重量,问钱罐里最少可能有多少钱. 完全背包. 代码: #include<iostream> #include<cstdio> #inc ...

  3. bzoj 1531 Bank notes 多重背包/单调队列

    多重背包二进制优化终于写了一次,注意j的边界条件啊,疯狂RE(还是自己太菜了啊啊)最辣的辣鸡 #include<bits/stdc++.h> using namespace std; in ...

  4. HDU1114(完全背包装满问题)

    Piggy-Bank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  5. HDU-1114 完全背包+恰好装满问题

    B - Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  6. ACM Piggy Bank

    Problem Description Before ACM can do anything, a budget must be prepared and the necessary financia ...

  7. ImageNet2017文件下载

    ImageNet2017文件下载 文件说明 imagenet_object_localization.tar.gz包含训练集和验证集的图像数据和地面实况,以及测试集的图像数据. 图像注释以PASCAL ...

  8. ImageNet2017文件介绍及使用

    ImageNet2017文件介绍及使用 文件说明 imagenet_object_localization.tar.gz包含训练集和验证集的图像数据和地面实况,以及测试集的图像数据. 图像注释以PAS ...

  9. Android开发训练之第五章第五节——Resolving Cloud Save Conflicts

    Resolving Cloud Save Conflicts IN THIS DOCUMENT Get Notified of Conflicts Handle the Simple Cases De ...

  10. hdu26道动态规划总结

    前言:我们队的dp一直是我在做,说不上做的很顺,有些可以做,有些不能做.到现在为止,做dp题目也有七八十道了,除了背包问题的题目我可以说有百分之七八十的把握ac的话,其他类型的dp,还真没有多大把握. ...

随机推荐

  1. DLL入门浅析【转】

     1.建立DLL动态库 动态链接库(DLL)是从C语言函数库和Pascal库单元的概念发展而来的.所有的C语言标准库函数都存放在某一函数库中.在链接应用程序的过程中,链接器从库文件中拷贝程序调用的函数 ...

  2. phpstorm 格式化代码

    MAC 安装phpcs.phpcbf composer global require 'squizlabs/php_codesniffer=*' Changed current directory t ...

  3. SSAS 系列01- DAX公式常用公式

    计算第一次购买时间 CALCULATE(FIRSTDATE(FactInternetSales[OrderDate]),ALLEXCEPT(FactInternetSales,FactInternet ...

  4. index 定义 v-for 未使用变量 实际是没有 :key="index"

    需要有 :key="index" <Checkbox :label="item.key" :key="index" v-for=&qu ...

  5. 用list去初始化numpy的array数组 numpy的array和python中自带的list之间相互转化

    http://blog.csdn.net/baiyu9821179/article/details/53365476 a=([3.234,34,3.777,6.33]) a为python的list类型 ...

  6. 利用CWinThread实现跨线程父子MFC窗口

    利用CWinThread实现跨线程父子MFC窗口 MFC对象只能由创建该对象的线程访问,而不能由其他线程访问. 不遵守该准则将导致断言(assertion)或者无法预知的程序行为等运行期错误. 在多线 ...

  7. Win10 启动64位IE浏览器——修改注册表方法

    修改注册表[HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Main]下的: "TabProcGrowth"=DWOR ...

  8. mybatis 实现批量更新

    更新单条记录 1 UPDATE course SET name = 'course1' WHERE id = 'id1'; 更新多条记录的同一个字段为同一个值 1 UPDATE course SET  ...

  9. mybatis-5 手写代理

    @Target(ElementType.METHOD) @Retention(RetentionPolicy.RUNTIME) public @interface Select { public St ...

  10. (11) openssl req(生成请求证书、私钥和自建CA)

    伪命令req大致有3个功能:生成证书请求文件.验证证书请求文件和创建根CA. 由于openssl req命令选项较多,所以先各举几个例子,再集中给出openssl req的选项说明.若已熟悉opens ...