论文为:COCHONUT: Recognizing Complex Chords From MIDI Guitar Sequences
出处:international symposium/conference on music information retrieval(ISMIR) 2008
 
自动和弦辨别的难点:
strong context dependency and the large number of possible combinations of the intervals which the chords are made of, specially when dealing with dissonances,and suspended chords.
论文提出一个新的方法COCHONUT (Complex Chords Nutting)来识别midi guitar的和弦,基于contextual harmonic information + decision theory + optimization + pattern matching + rule-based recognition
COCHONUT的目标不仅是辨认1,3,5音,复杂音符,4音符,5音符,6音符和弦也能被辨认出来。
 
代码中是基于musicXML来进行解析,因此可以得到歌曲大小调标志(后续根据上下文来增强识别和弦时需要用到)
第一步,a segmentation algorithm判断出最可能的和弦变化的点,这一步做分割。主要函数
,segments是一个记录了n个segment的list,每一个segment记录了一段共用和弦的时间段。划分原理大概是基于note的数量的。这里
 
第二步,utility function判别每个segmentation的和弦;

这里构建了一个weight权重数组(12音阶),统计出该段中的音符值次数(权重比例),将该权重数组与事先定义好的和弦template一起匹配,得到每个和弦的得分,并得出最佳得分的和弦。

templates = [{'name': 'maj', 'pattern': [0, 4, 7]},
{'name': 'minor', 'pattern': [0, 3, 7]},
{'name': 'diminished', 'pattern': [0, 3, 6]},
{'name': '-5', 'pattern': [0, 4, 6]},
{'name': 'aug', 'pattern': [0, 4, 8]},
{'name': 'sus4', 'pattern': [0, 5, 7]},
{'name': 'sus2', 'pattern': [0, 2, 7]},
{'name': 'maj7', 'pattern': [0, 4, 7, 11]},
{'name': 'maj7+5', 'pattern': [0, 4, 8, 11]},
{'name': 'dom', 'pattern': [0, 4, 7, 10]},
{'name': 'add9', 'pattern': [0, 4, 7, 14]},
{'name': '1/2dim', 'pattern': [0, 3, 6, 10]},
{'name': 'dim7', 'pattern': [0, 3, 6, 9]},
{'name': 'min7', 'pattern': [0, 3, 7, 10]},
{'name': 'min/maj7', 'pattern': [0, 3, 7, 11]},
{'name': '7+5', 'pattern': [0, 4, 8, 10]},
{'name': '7-5', 'pattern': [0, 4, 6, 10]},
{'name': '7sus4', 'pattern': [0, 5, 7, 10]},
{'name': 'maj6', 'pattern': [0, 4, 7, 9]},
{'name': 'minor6', 'pattern': [0, 3, 7, 9]},
{'name': 'madd9', 'pattern': [0, 3, 7, 14]},
{'name': 'm6/9', 'pattern': [0, 3, 7, 9, 14]},
{'name': '6add9', 'pattern': [0, 4, 7, 9, 14]},
{'name': '7/6', 'pattern': [0, 4, 7, 9, 10]},
{'name': '9', 'pattern': [0, 4, 7, 10, 14]},
{'name': '7/13', 'pattern': [0, 4, 7, 10, 21]},
{'name': '9-5', 'pattern': [0, 4, 6, 10, 14]},
{'name': '9+5', 'pattern': [0, 4, 8, 10, 14]},
{'name': 'min9', 'pattern': [0, 3, 7, 10, 14]},
{'name': '7-9', 'pattern': [0, 4, 7, 10, 13]},
{'name': '7+9', 'pattern': [0, 4, 7, 10, 15]},
{'name': 'maj9', 'pattern': [0, 4, 7, 11, 14]},
{'name': 'min/maj9', 'pattern': [0, 3, 7, 11, 14]},
{'name': '9/6', 'pattern': [0, 4, 7, 9, 10, 14]},
{'name': 'maj11', 'pattern': [0, 4, 7, 11, 14, 17]},
{'name': '9+11', 'pattern': [0, 4, 7, 10, 14, 18]},
{'name': '11', 'pattern': [0, 4, 7, 10, 14, 17]},
{'name': '11-9', 'pattern': [0, 4, 7, 10, 13, 17]},
{'name': 'aug11', 'pattern': [0, 4, 7, 10, 14, 18]},
{'name': 'min11', 'pattern': [0, 3, 7, 10, 14, 17]},
{'name': 'min13', 'pattern': [0, 3, 7, 10, 14, 17, 21]},
{'name': 'maj13', 'pattern': [0, 4, 7, 11, 14, 17, 21]},
{'name': '13', 'pattern': [0, 4, 7, 10, 14, 17, 21]},
{'name': '13-9', 'pattern': [0, 4, 7, 10, 13, 17, 21]},
{'name': '13-9-6', 'pattern': [0, 4, 6, 10, 13, 17, 21]},
{'name': '13-9+11', 'pattern': [0, 4, 7, 10, 13, 18, 21]},
{'name': '13+11', 'pattern': [0, 4, 7, 10, 14, 18, 21]},
{'name': '13b', 'pattern': [0, 4, 7, 10, 14, 17, 20]}]
 

接下来,把前后相关的segments和调式一起结合起来,从上下文的角度来增强和弦挑选的准确性。

大调和小调的区别处理

事先定义好的和弦走向转换图

第三步,graph is built表示出最可能的和弦整体图,A rule base containing common chord sequences patterns in jazz harmony is used to solve ambiguous cases.
 
 
 
 

基于COCHONUT做和弦识别的更多相关文章

  1. 基于Python使用SVM识别简单的字符验证码的完整代码开源分享

    关键字:Python,SVM,字符验证码,机器学习,验证码识别 1   概述 基于Python使用SVM识别简单的验证字符串的完整代码开源分享. 因为目前有了更厉害的新技术来解决这类问题了,但是本文作 ...

  2. 基于FPGA的肤色识别算法实现

    大家好,给大家介绍一下,这是基于FPGA的肤色识别算法实现. 我们今天这篇文章有两个内容一是实现基于FPGA的彩色图片转灰度实现,然后在这个基础上实现基于FPGA的肤色检测算法实现. 将彩色图像转化为 ...

  3. 基于ARM的车牌识别技术研究与实现

    在云盘里包含了我本科毕业设计的全部资料和代码.主要涉及下面摘要中的几个部分.虽然系统无法实用,但是适合机器视觉和嵌入式方向的入门.希望能对有志从事相关方向的朋友有所帮助.本人现在在深圳从事机器视觉算法 ...

  4. 基于FPGA的数字识别的实现

    欢迎大家关注我的微信公众号:FPGA开源工作室     基于FPGA的数字识别的实现二 作者:lee神 1 背景知识 1.1基于FPGA的数字识别的方法 通常,针对印刷体数字识别使用的算法有:基于模版 ...

  5. 【文智背后的奥秘】系列篇——基于CRF的人名识别

    版权声明:本文由文智原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/133 来源:腾云阁 https://www.qclou ...

  6. 基于 OpenCV 的人脸识别

    基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenC ...

  7. 数字图像处理:基于MATLAB的车牌识别项目 标签: 图像处理matlab算法 2017-06-24 09:17 98人阅读 评论(0)

    学过了数字图像处理,就进行一个综合性强的小项目来巩固一下知识吧.前阵子编写调试了一套基于MATLAB的车牌识别的项目的代码.今天又重新改进了一下代码,识别的效果好一点了,也精简了一些代码.这里没有使用 ...

  8. 基于node.js人脸识别之人脸对比

    基于node.js人脸识别之人脸对比 Node.js简介 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境. Node.js 使用了一个事件驱动.非阻塞式 I/O ...

  9. 基于ORB-SLAM2的图片识别

    基于ORB-SLAM2的图片识别,其功能是首先运行ORB-SLAM2,在运行过程中调起另一个线程进行图像识别,识别成功后在图片上渲染AR中的立方体模型. 识别过程主要基于ORB-SLAM2中的BoW算 ...

随机推荐

  1. 【HDOJ6342】Expression in Memories(模拟)

    题意: 给定一个由0123456789+* ?组成的表达式,其中?可以被改为任意其它字符,问修改问号后是否有方案使得表达式合法 len<=5e2,sumlen<=1e5 思路: #incl ...

  2. js82:CSS的Style,image的重定位,getElementById,getElementsByTagName,location.href

    原文发布时间为:2008-11-10 -- 来源于本人的百度文章 [由搬家工具导入] <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tran ...

  3. asp.net网页防刷新重复提交、防后退解决办法!

    原文发布时间为:2008-10-14 -- 来源于本人的百度文章 [由搬家工具导入] 1、提交后 禁用提交按钮(像CSDN这样)2、数据处理成功马上跳转到另外一个页面! 操作后刷新的确是个问题,你可以 ...

  4. Xcode 全局搜索失效的问题

    早上手一快不知点了什么,然后全局搜索的功能就不起作用了.百度了一下才知道,原来把搜索范围给改了,改回来如下:

  5. uva 1364

    刘书上例题 #include <cstdio> #include <cstdlib> #include <cmath> #include <set> # ...

  6. Google C++ style guide——C++类

    1.构造函数的职责 构造函数中仅仅进行那些没有实际意义的初始化.由于成员变量的"有意义"的值大多不在构造函数中确定. 能够的话,使用Init()方法集中初始化为有意义的数据. 长处 ...

  7. 【APUE】进程间通信之信号量

    信号量是一个计数器,用于多进程对共享数据对象的访问 为了获得共享资源,进程需要执行下列操作: 1)测试控制该资源的信号量 2)若此信号量为正,则进程可以使用该资源,进程将信号量减1,表示它使用了一个资 ...

  8. Null value was assigned to a property of primitive type setter of原因及解决

    出现Null value was assigned to a property of primitive type setter of错误是由于类型不匹配,将字段的属性由hibernate的int类型 ...

  9. Office EXCEL 创建图片超链接打不开怎么办 Excel打开图片提示发生了意外错误怎么办

    如下图所示,点击超链接提示无法打开指定的文件   如果使用Office打开,则提示发生了意外错误   你需要先把IE浏览器打开,这样就可以打开了,并非是图像的相对位置不正确导致的.      

  10. 关于对FLASH开发,starling、starling feathers、starling MVC框架的理解

    说在前头:楼主之前没有不论什么flash开发经验,仅仅是从一次尝试中总结自己的理解和经验而已.假设有写的不正确的地方,欢迎大家指正. 前一段时间尝试想用flash(as3)又一次制作一下之前做的一个游 ...