HDU 5945 Fxx and game (DP+单调队列)
题意:给定一个 x, k, t,你有两种操作,一种是 x - i (0 <= i <= t),另一种是 x / k (x % k == 0)。问你把x变成1需要的最少操作。
析:这肯定是DP,也想到可能是单调队列,但是不会啊。。。。就是胡搞了一发,虽然AC了,但是效率极低,比用单调队列少10倍。
dp[i] 表示把 i 变成 1,要用的最少步骤,然后每次取最优。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 5;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2};
const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int dp[maxn];
int q[maxn]; int solve(int k, int x){
int cnt = 0;
while(x){
x /= k;
++cnt;
}
return cnt-1;
} int main(){
int T; cin >> T;
while(T--){
int x, k, t;
scanf("%d %d %d", &x, &k, &t);
if(k == 1){ printf("%d\n", (x-1)%t == 0 ? (x-1)/t : (x-1)/t+1); continue; }
else if(!t){ printf("%d\n", solve(k, x)); continue; }
dp[1] = 0; q[1] = 1;
int l = 1, r = 1;
for(int i = 2; i <= x; ++i){
while(q[l] < i-t) ++l;
dp[i] = dp[q[l]] + 1;
if(i % k == 0) dp[i] = Min(dp[i], dp[i/k]+1);
while(l <= r && dp[q[r]] >= dp[i]) --r;
q[++r] = i;
}
printf("%d\n", dp[x]);
}
return 0;
}
HDU 5945 Fxx and game (DP+单调队列)的更多相关文章
- hdu 5945 Fxx and game(单调队列优化DP)
题目链接:hdu 5945 Fxx and game 题意: 让你从x走到1的位置,问你最小的步数,给你两种走的方式,1.如果k整除x,那么你可以从x走一步到k.2.你可以从x走到j,j+t<= ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- DP+单调队列 codevs 1748 瑰丽华尔兹(还不是很懂具体的代码实现)
codevs 1748 瑰丽华尔兹 2005年NOI全国竞赛 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 题目描述 Descripti ...
- hdu 3706 Second My Problem First 单调队列
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3706 Second My Problem First Time Limit: 12000/4000 M ...
- 习题:烽火传递(DP+单调队列)
烽火传递[题目描述]烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有n个烽火台,每个烽火台 ...
- (noip模拟二十一)【BZOJ2500】幸福的道路-树形DP+单调队列
Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...
- 3622 假期(DP+单调队列优化)
3622 假期 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 黄金 Gold 题目描述 Description 经过几个月辛勤的工作,FJ决定让奶牛放假.假期可以在1-N天内任意选择 ...
- hdu 5945 Fxx and game(dp+单调队列! bc#89)
Young theoretical computer scientist Fxx designed a game for his students. In each game, you will ge ...
- HDU 5945 题解(DP)(单调队列)
题面: Fxx and game Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) T ...
随机推荐
- 【BZOJ3626】LCA(树上差分,树链剖分)
题意:给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询问给 ...
- 深入理解计算机操作系统——第11章:CS模型,网络
网络编程: 11.1 客户端-服务器编程模型 (1)一个应用是由一个服务器进程和一个或多个客户端进程组成. (2)服务器管理某种资源,并且操纵这种资源来为客户端服务. CS模型: CS的基本操作是事务 ...
- python(5)- 基础数据类型
一 int 数字类型 #abs(x) 返回数字的绝对值,如abs(-10) 返回 10 # ceil(x) 返回数字的上入整数,如math.ceil(4.1) 返回 5 # cmp(x, y) 如果 ...
- UVA 10245 The Closest Pair Problem【分治】
题目链接: http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=21269 题意: 求平面最近点对. 分析: 经典问题. n比 ...
- 集群架构和CentOS7安装RabbitMQ集群(单机版)
1. 集群架构 1.1 四种内部元数据 队列元数据.交换器元数据.绑定元数据.vhost元数据. 单一节点中:会将数据存储到内存,同时将持久化元数据保存到硬盘. 集群中: 存储到磁盘上.内存中. 集群 ...
- zookeeper原理浅析(一)
参考:https://www.cnblogs.com/leocook/p/zk_0.html 代码:https://github.com/littlecarzz/zookeeper 1. 什么是Zoo ...
- centOS 安装mysql5.6
删除原先的mysql5.1#数据库服务器的安装 , 请自行在mysql官方找最新的rpm rpm -Uvh http://dev.mysql.com/get/mysql-community-relea ...
- Spring错误异常重试框架guava-retrying
官网:https://github.com/rholder/guava-retrying Maven:https://mvnrepository.com/artifact/com.github.rho ...
- how to read openstack code: loading process
之前我们了解了neutron的结构,plugin 和 extension等信息.这一章我们看一下neutron如何加载这些plugin和extension.也就是neutron的启动过程.本文涉及的代 ...
- zoom to raster resolution
don't execute the ESRI's command, just find out and write codes to zoom to the raster resolution. H ...