Cards BZOJ 1004
Cards
【问题描述】
小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).
【输入格式】
第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。
【输出格式】
不同染法除以P的余数
【样例输入】
1 1 1 2 7
2 3 1
3 1 2
【样例输出】
2
【样例解释】
有2种本质上不同的染色法RGB和RBG,使用洗牌法231一次可得GBR 和BGR,使用洗牌法312一次可得BRG和GRB。
【数据范围】
100%数据满足:Max{Sr,Sb,Sg}<=20。
题解:
Burnside引理:用D(ai)表示在置换ai下不变的元素个数。L表示本质不同的方案数。G表示置换群。|G|表示置换群的大小。
置换群简单地讲就是给定置换,所有置换的置换所组成的集合就是置换群
举个例子:
4个置换组成的置换群:
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
假设我们有2种颜色用0与1表示
第一种:所有方案都不变,D(a1) = 16
第二种:0000、1111,D(a2) = 2
第三种:0000、1111、0101、1010,D(a3) = 4
第四种:0000、1111,D(a4) = 2
那么 L = (16 + 2 + 4 + 2) / 4 = 6
这就是本质不同的方案数
题目中已经保证给出所有置换中,只要加上一个不变的置换就能得到置换群
显然置换可以拆成多个轮换相乘
所以对每种轮换内的元素进行同种颜色的染色,那么轮换中的颜色经过此置换仍然不变
那么用一个01背包,就可以求出在一个置换下不变的元素个数
然后有模数,所以用逆元求一下分母
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
inline int Get()
{
int x = ;
char c = getchar();
while('' > c || c > '') c = getchar();
while('' <= c && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
return x;
}
const int me = ;
int r, b, g, m, p, n, t;
bool vis[me];
int a[me];
int si[me];
int num;
long long ans;
long long f[me][me][me];
inline long long Pow(long long x, int y)
{
long long res = ;
long long sum = x % p;
while(y)
{
if(y & ) res = (res * sum) % p;
sum = (sum * sum) % p;
y >>= ;
}
return res;
}
int main()
{
r = Get(), b = Get(), g = Get(), m = Get(), p = Get();
n = r + b + g;
++m;
t = m;
while(m--)
{
num = ;
memset(f, , sizeof(f));
memset(si, , sizeof(si));
memset(vis, false, sizeof(vis));
for(int i = ; i <= n; ++i)
{
if(m) a[i] = Get();
else a[i] = i;
}
for(int i = ; i <= n; ++i)
{
if(!vis[i])
{
int c = a[i];
++num;
while(!vis[c])
{
vis[c] = true;
++si[num];
c = a[c];
}
}
}
f[][][] = ;
for(int i = ; i <= num; ++i)
for(int j = r; j >= ; --j)
for(int k = b; k >= ; --k)
for(int l = g; l >= ; --l)
{
if(j >= si[i]) f[j][k][l] = (f[j][k][l] + f[j - si[i]][k][l]) % p;
if(k >= si[i]) f[j][k][l] = (f[j][k][l] + f[j][k - si[i]][l]) % p;
if(l >= si[i]) f[j][k][l] = (f[j][k][l] + f[j][k][l - si[i]]) % p;
}
ans = (ans + f[r][b][g]) % p;
}
printf("%lld", (ans * Pow(t, p - )) % p);
}
Cards BZOJ 1004的更多相关文章
- 【HNOI2008】Cards BZOJ 1004
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目 前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张 ...
- [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】
题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...
- bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...
- bzoj 1004 Cards
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...
- bzoj 1004 1004: [HNOI2008]Cards burnside定理
1004: [HNOI2008]Cards Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1668 Solved: 978[Submit][Stat ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...
- BZOJ 1004 【HNOI2008】 Cards
题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...
- BZOJ 1004: [HNOI2008]Cards
Description 给你一个序列,和m种可以使用多次的置换,用3种颜色染色,求方案数%p. Sol Burnside定理+背包. Burnside定理 \(N(G,\mathbb{C})=\fra ...
随机推荐
- Fedora19 有关输入法的无法切换问题 和 终端的快捷设置问题
Fedora19 有关输入法的无法切换问题 和 终端的快捷设置问题 1.首先,要单击右上角的设置输入法的"区域与语言设置",要设置为“为每个窗口设置不同的输入源”. 还有,刚使用的 ...
- UVA - 1252 Twenty Questions (状压dp)
状压dp,用s表示已经询问过的特征,a表示W具有的特征. 当满足条件的物体只有一个的时候就不用再猜测了.对于满足条件的物体个数可以预处理出来 转移的时候应该枚举询问的k,因为实际上要猜的物品是不确定的 ...
- mac文件夹怎么重命名?苹果电脑文件夹重命名快捷键
windows系统下给文件夹重命名相信很多朋友都很熟悉,那么Mac OS系统怎么给文件重命名呢,相信很多刚刚入手Mac OS系统的亲们都会有次疑问,下面小编告诉你Mac OS系统的文件夹到底要怎样才能 ...
- Android Studio 中安装 apk 被拆分成多个 slice,如何禁止?
Android Studio 3.0.1 中,Run 'app' 时,生成的 apk 被分割成多个 slice: $ adb install-multiple -r D:\...\app\build\ ...
- quartz测试类
package demo.mytest; import java.text.ParseException; import org.quartz.CronTrigger;import org.quart ...
- Instance Methods are Curried Functions in Swift
An instance method in Swift is just a type method that takes the instance as an argument and returns ...
- Fortran学习笔记4(循环语句)
Fortran学习笔记4 Fortran学习笔记4 逻辑运算 循环 Do语句 Do-While循环 循环控制 循环应用实例 逻辑运算 if命令需要和逻辑运算表达式搭配才能起到很好的效果.下面分别列出F ...
- Watch Before You Feel Pressure
Today's assembly is about the start of a journey. 今天的大会是一个旅程的开始. The start of the rest of your lives ...
- HDU-1241-油藏
这题一道深搜的简单题目,其实题目的思路就只是向八个方向搜索,然后把整个油田遍历一遍即可. #include <cstdio> #include <cstring> int ma ...
- 【树状数组 思维题】luoguP3616 富金森林公园
树状数组.差分.前缀和.离散化 题目描述 博艾的富金森林公园里有一个长长的富金山脉,山脉是由一块块巨石并列构成的,编号从1到N.每一个巨石有一个海拔高度.而这个山脉又在一个盆地中,盆地里可能会积水,积 ...