Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)
3 seconds
256 megabytes
standard input
standard output
Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.
City consists of n intersections numbered from 1 to n. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number i to intersection j requires |i - j| units of energy. The total energyspent by Mike to visit a sequence of intersections p1 = 1, p2, ..., pk is equal to units of energy.
Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly n shortcuts in Mike's city, the ith of them allows walking from intersection i to intersection ai (i ≤ ai ≤ ai + 1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence p1 = 1, p2, ..., pk then for each 1 ≤ i < k satisfying pi + 1 = api and api ≠ pi Mike will spend only 1 unit of energy instead of |pi - pi + 1| walking from the intersection pi to intersection pi + 1. For example, if Mike chooses a sequencep1 = 1, p2 = ap1, p3 = ap2, ..., pk = apk - 1, he spends exactly k - 1 units of total energy walking around them.
Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1 ≤ i ≤ n Mike is interested in finding minimum possible total energy of some sequence p1 = 1, p2, ..., pk = i.
The first line contains an integer n (1 ≤ n ≤ 200 000) — the number of Mike's city intersection.
The second line contains n integers a1, a2, ..., an (i ≤ ai ≤ n , , describing shortcuts of Mike's city, allowing to walk from intersection i to intersection ai using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from ai to i).
In the only line print n integers m1, m2, ..., mn, where mi denotes the least amount of total energy required to walk from intersection 1 to intersection i.
- 3
- 2 2 3
- 0 1 2
- 5
- 1 2 3 4 5
- 0 1 2 3 4
- 7
- 4 4 4 4 7 7 7
- 0 1 2 1 2 3 3
In the first sample case desired sequences are:
1: 1; m1 = 0;
2: 1, 2; m2 = 1;
3: 1, 3; m3 = |3 - 1| = 2.
In the second sample case the sequence for any intersection 1 < i is always 1, i and mi = |1 - i|.
In the third sample case — consider the following intersection sequences:
1: 1; m1 = 0;
2: 1, 2; m2 = |2 - 1| = 1;
3: 1, 4, 3; m3 = 1 + |4 - 3| = 2;
4: 1, 4; m4 = 1;
5: 1, 4, 5; m5 = 1 + |4 - 5| = 2;
6: 1, 4, 6; m6 = 1 + |4 - 6| = 3;
7: 1, 4, 5, 7; m7 = 1 + |4 - 5| + 1 = 3.
这题基本不能用SPFA,20W个点,边多到存不下,SPFA会WA4,然后试了下BFS,也WA4,发现有个坑,第四组中到第10个点的最短距离是8,是1走捷径到17,再一步一步往回走到10即1+7=8而不是直接从1走到10的直接距离9,显然这里需要往回走。BFS里面多写一个往回走的方向搜索就好了
代码:
- #include<iostream>
- #include<algorithm>
- #include<cstdlib>
- #include<sstream>
- #include<cstring>
- #include<cstdio>
- #include<string>
- #include<deque>
- #include<stack>
- #include<cmath>
- #include<queue>
- #include<set>
- #include<map>
- using namespace std;
- #define INF 0x3f3f3f3f
- #define MM(x,y) memset(x,y,sizeof(x))
- typedef pair<int,int> pii;
- typedef long long LL;
- const double PI=acos(-1.0);
- const int N=200010;
- int vis[N];
- int cut[N];
- int d[N];
- queue<pii>Q;
- void init()
- {
- MM(vis,0);
- MM(cut,-1);
- MM(d,0);
- while (!Q.empty())
- Q.pop();
- }
- void bfs(const int &s)
- {
- Q.push(pii(s,0));
- while (!Q.empty())
- {
- pii now=Q.front();
- Q.pop();
- vis[now.first]=1;
- d[now.first]=now.second;
- int v;
- v=cut[now.first];
- if(!vis[v]&&v!=-1)
- {
- Q.push(pii(v,now.second+1));
- vis[v]=1;
- }
- v=now.first+1;
- if(!vis[v])
- {
- Q.push(pii(v,now.second+1));
- vis[v]=1;
- }
- v=now.first-1;
- if(!vis[v])
- {
- Q.push(pii(v,now.second+1));
- vis[now.first-1]=1;
- }
- }
- return ;
- }
- int main(void)
- {
- int n,i,j,a,b;
- while (~scanf("%d",&n))
- {
- init();
- for (i=1; i<=n; i++)
- {
- scanf("%d",&a);
- cut[i]=a;
- }
- bfs(1);
- for (i=1; i<=n; i++)
- printf("%d%s",d[i],i==n?"\n":" ");
- }
- return 0;
- }
Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)的更多相关文章
- Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs
B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分
C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...
- Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题
A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #361 (Div. 2)A. Mike and Cellphone
A. Mike and Cellphone time limit per test 1 second memory limit per test 256 megabytes input standar ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem
题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...
- set+线段树 Codeforces Round #305 (Div. 2) D. Mike and Feet
题目传送门 /* 题意:对于长度为x的子序列,每个序列存放为最小值,输出长度为x的子序列的最大值 set+线段树:线段树每个结点存放长度为rt的最大值,更新:先升序排序,逐个添加到set中 查找左右相 ...
随机推荐
- GreenDao3.2的使用
原文:http://blog.csdn.net/qq_30379689/article/details/54410838 GreenDao3.2的使用,爱不释手 本篇文章包括以下内容: 前言 Gree ...
- jmeter中登录和提交收银出现的错误
登录出现的错误 登录界面如图所示: 为了防止登录跳转的问题response code 302的问题,要设置 2.提交收银界面 当系统设置必须传送jison格式时,要在HTTP Header Manag ...
- JS 一个页面关闭多个页面
<!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head><meta ...
- Could not load OpenSSL解决
问题 Could not load OpenSSL. You must recompile Ruby with OpenSSL support or change the sources in you ...
- UVA 247 - Calling Circles (Floyd)
互相可以打电话是一个传递关系,所以Floyd求传递封包,dfs找一个尽量大的圈. #include<bits/stdc++.h> using namespace std; ; map< ...
- ftpaccess - ftpd的配置档
描述 DESCRIPTION 这个ftpaccess档案是用来配置下述功能的运作 存取功能(AccessCapabilities) autogroup<群组名称><类别>[&l ...
- 通过例子理解 k8s 架构【转】
为了帮助大家更好地理解 Kubernetes 架构,我们部署一个应用来演示各个组件之间是如何协作的. 执行命令 kubectl run httpd-app --image=httpd --replic ...
- 学习笔记之30个常用的maven命令
maven 命令的格式为 mvn [plugin-name]:[goal-name],可以接受的参数如下, -D 指定参数,如 -Dmaven.test.skip=true 跳过单元测试: -P 指定 ...
- 全排列问题(DFS)
题目描述: 输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字. 输入格式: n(1≤n≤9) 输出格式: 由1-n组成的所有不重复的数字序列,每行一个序列 ...
- (59)zabbix拓扑图展示链路状况Link indicators
Link indicators介绍 上一篇已经了解了如何配置zabbix map,也提到了如何连接两个map元素,这节我们来讲两个map元素之间的链路指示配置. 我们需要在链路上配置trigger,如 ...