B. Mike and Shortcuts
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.

City consists of n intersections numbered from 1 to n. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number i to intersection j requires |i - j| units of energy. The total energyspent by Mike to visit a sequence of intersections p1 = 1, p2, ..., pk is equal to  units of energy.

Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly n shortcuts in Mike's city, the ith of them allows walking from intersection i to intersection ai (i ≤ ai ≤ ai + 1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence p1 = 1, p2, ..., pk then for each 1 ≤ i < k satisfying pi + 1 = api and api ≠ pi Mike will spend only 1 unit of energy instead of |pi - pi + 1| walking from the intersection pi to intersection pi + 1. For example, if Mike chooses a sequencep1 = 1, p2 = ap1, p3 = ap2, ..., pk = apk - 1, he spends exactly k - 1 units of total energy walking around them.

Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1 ≤ i ≤ n Mike is interested in finding minimum possible total energy of some sequence p1 = 1, p2, ..., pk = i.

Input

The first line contains an integer n (1 ≤ n ≤ 200 000) — the number of Mike's city intersection.

The second line contains n integers a1, a2, ..., an (i ≤ ai ≤ n , , describing shortcuts of Mike's city, allowing to walk from intersection i to intersection ai using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from ai to i).

Output

In the only line print n integers m1, m2, ..., mn, where mi denotes the least amount of total energy required to walk from intersection 1 to intersection i.

Examples
input
3
2 2 3
output
0 1 2
input
5
1 2 3 4 5
output
0 1 2 3 4
input
7
4 4 4 4 7 7 7
output
0 1 2 1 2 3 3
Note

In the first sample case desired sequences are:

1: 1; m1 = 0;

2: 1, 2; m2 = 1;

3: 1, 3; m3 = |3 - 1| = 2.

In the second sample case the sequence for any intersection 1 < i is always 1, i and mi = |1 - i|.

In the third sample case — consider the following intersection sequences:

1: 1; m1 = 0;

2: 1, 2; m2 = |2 - 1| = 1;

3: 1, 4, 3; m3 = 1 + |4 - 3| = 2;

4: 1, 4; m4 = 1;

5: 1, 4, 5; m5 = 1 + |4 - 5| = 2;

6: 1, 4, 6; m6 = 1 + |4 - 6| = 3;

7: 1, 4, 5, 7; m7 = 1 + |4 - 5| + 1 = 3.

这题基本不能用SPFA,20W个点,边多到存不下,SPFA会WA4,然后试了下BFS,也WA4,发现有个坑,第四组中到第10个点的最短距离是8,是1走捷径到17,再一步一步往回走到10即1+7=8而不是直接从1走到10的直接距离9,显然这里需要往回走。BFS里面多写一个往回走的方向搜索就好了

代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define MM(x,y) memset(x,y,sizeof(x))
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=200010; int vis[N];
int cut[N];
int d[N];
queue<pii>Q; void init()
{
MM(vis,0);
MM(cut,-1);
MM(d,0);
while (!Q.empty())
Q.pop();
}
void bfs(const int &s)
{
Q.push(pii(s,0));
while (!Q.empty())
{
pii now=Q.front();
Q.pop();
vis[now.first]=1;
d[now.first]=now.second;
int v;
v=cut[now.first];
if(!vis[v]&&v!=-1)
{
Q.push(pii(v,now.second+1));
vis[v]=1;
}
v=now.first+1;
if(!vis[v])
{
Q.push(pii(v,now.second+1));
vis[v]=1;
}
v=now.first-1;
if(!vis[v])
{
Q.push(pii(v,now.second+1));
vis[now.first-1]=1;
}
}
return ;
}
int main(void)
{
int n,i,j,a,b;
while (~scanf("%d",&n))
{
init();
for (i=1; i<=n; i++)
{
scanf("%d",&a);
cut[i]=a;
}
bfs(1);
for (i=1; i<=n; i++)
printf("%d%s",d[i],i==n?"\n":" ");
}
return 0;
}

Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)的更多相关文章

  1. Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs

    B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...

  2. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  3. Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分

    C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...

  4. Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题

    A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...

  5. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  6. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...

  7. Codeforces Round #361 (Div. 2)A. Mike and Cellphone

    A. Mike and Cellphone time limit per test 1 second memory limit per test 256 megabytes input standar ...

  8. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem

    题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...

  9. set+线段树 Codeforces Round #305 (Div. 2) D. Mike and Feet

    题目传送门 /* 题意:对于长度为x的子序列,每个序列存放为最小值,输出长度为x的子序列的最大值 set+线段树:线段树每个结点存放长度为rt的最大值,更新:先升序排序,逐个添加到set中 查找左右相 ...

随机推荐

  1. Hibernate:Disjunction&Conjunction构造复杂的查询条件.

    Hibernate:Disjunction&Conjunction构造复杂的查询条件 Disjunction和Conjunction是逻辑或和逻辑与,如下: 用来组合一组逻辑或[or]条件的方 ...

  2. Selenium私房菜系列7 -- 玩转Selenium Server

    本篇主要是想更进一步介绍Selenium Server的工作原理,这次我们从Selenium Server的交互模式开始. 在<第一个Selenium RC测试案例>中,我们以命令“jav ...

  3. sql中的exsits和not exsits

    select * from table where exsits(sql语句) :  括号中sql语句有数据则返回这些相关id的数据集 select * from table where not ex ...

  4. Android(java)学习笔记143:Android中View动画之 XML实现 和 代码实现

    1.Animation 动画类型 Android的animation由四种类型组成: XML中: alph 渐变透明度动画效果 scale 渐变尺寸伸缩动画效果 translate 画面转换位置移动动 ...

  5. git 添加 ,密匙

    转载此处   https://blog.csdn.net/xiayiye5/article/details/79652296

  6. Open Scene Graph:让VS支持不含后缀的头文件

    让VS支持不含后缀的头文件 看OSG源码时,会遇到不含后缀的头文件无定位信息的尴尬,很让人苦恼. 就是单击VS中“工具菜单栏”——>”选项(O)….”如下图所示: 菜单项,弹出选项对话框,单击“ ...

  7. syslog(),closelog()与openlog()--日志操作函数 (2)

    文章出处:http://blog.chinaunix.net/uid-26583794-id-3166083.html 守护进程日志的实现 syslogd守护进程用于解决守护进程的日志记录问题,而日志 ...

  8. bootstrap历练实例: 导航元素中禁用的链接

    对每个 .nav class,如果添加了 .disabled class,则会创建一个灰色的链接,同时禁用了该链接的 :hover 状态, <!DOCTYPE html><html& ...

  9. Bootstrap历练实例:验证状态

    验证状态 Bootstrap 包含了错误.警告和成功消息的验证样式.只需要对父元素简单地添加适当的 class(.has-warning. .has-error 或 .has-success)即可使用 ...

  10. CSS规范(OOCSS SMACSS BEM)

    Css规范 OOCSS SMACSS BEM OOCSS(Object Oriented CSS)面向对象的css 主要分成四个部分 Template :模板 Grids :栅格布局 Module : ...