题目大意:给出一个无向有权图,找出一条从1到n的路径,使得路径上权值的异或和最大,路径可以重复走

Input

第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。

Output

仅包含一个整数,表示最大的XOR和(十进制结果) 。

Sample Input

5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2

Sample Output

6

思路:有空补

#include<cstdio>

#include<string.h>

#include<iostream>

#include<algorithm>

#define maxn 400009

#define LL long long

using namespace std;

LL head[maxn],next[maxn],point[maxn],value[maxn];

LL now,cir[maxn],xo[maxn],h,n,m,bin[maxn];

bool visit[maxn];

void add(int x,int y,LL v){

next[++now]=head[x];head[x]=now;

point[now]=y;value[now]=v;

}

void dfs(int k)

{

visit[k]=1;

for(int i=head[k];i;i=next[i]){

int u=point[i];

if(visit[u]==1)cir[++h]=xo[u]^xo[k]^value[i];

else xo[u]=xo[k]^value[i],dfs(u);

}

}

int main()

{

LL x,y,v;cin>>n>>m;

for(int i=1;i<=m;i++){

cin>>x>>y>>v;

add(x,y,v);add(y,x,v);

}dfs(1);bin[1]=1;

for(int i=2;i<=61;i++)bin[i]=bin[i-1]<<1;

int now=0;

for(int i=61;i>=1;i--)

{

int idx=now+1;

while((cir[idx]&bin[i])==0 && idx<=h)idx++;

if(idx==h+1)continue;

now++;

swap(cir[idx],cir[now]);

for(int j=1;j<=h;j++)if((cir[j]&bin[i])!=0 && j!=now)cir[j]^=cir[now];

}

for(int i=1;i<=h;i++)if((xo[n]^cir[i])>xo[n])xo[n]=xo[n]^cir[i];

cout<<xo[n]<<endl;

return 0;

}

【bzoj2115】[Wc2011] Xor【高斯消元】的更多相关文章

  1. bzoj2115 [Wc2011] Xor——高斯消元 & 异或线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 异或两次同一段路径的权值,就相当于没有走这段路径: 由此可以得到启发,对于不同的走法, ...

  2. 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS

    [BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...

  3. BZOJ 2115: [Wc2011] Xor [高斯消元XOR 线性基 图]

    啦啦啦 题意: N 个点M条边的边带权的无向图,求1到n一条XOR和最大的路径 感觉把学的东西都用上了.... 1到n的所有路径可以由一条1到n的简单路径异或上任意个简单环得到 证明: 如果环与路径有 ...

  4. bzoj 2115: [Wc2011] Xor xor高斯消元

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] ...

  5. ACM学习历程—HDU 3915 Game(Nim博弈 && xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所 ...

  6. ACM学习历程—UESTC 1219 Ba Gua Zhen(dfs && 独立回路 && xor高斯消元)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1219 题目大意是给了一张图,然后要求一个点通过路径回到这个点,使得xor和最大. 这是CCPC南阳站的一道题 ...

  7. ACM学习历程—BZOJ 2115 Xor(dfs && 独立回路 && xor高斯消元)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2115 题目大意是求一条从1到n的路径,使得路径xor和最大. 可以发现想枚举1到n的所有路 ...

  8. ACM学习历程—HDU 3949 XOR(xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题目大意是给n个数,然后随便取几个数求xor和,求第k小的.(重复不计算) 首先想把所有xor的 ...

  9. ACM学习历程—SGU 275 To xor or not to xor(xor高斯消元)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=275 这是一道xor高斯消元. 题目大意是给了n个数,然后任取几个数,让他们xor和 ...

  10. SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax

    275. To xor or not to xor   The sequence of non-negative integers A1, A2, ..., AN is given. You are ...

随机推荐

  1. Java 语言中一个字符占几个字节?

    Java中理论说是一个字符(汉字 字母)占用两个字节. 但是在UTF-8的时候 new String("字").getBytes().length 返回的是3 表示3个字节 作者: ...

  2. 获取SD卡下Android/data/下文件

    通常情况下多数应用程序都会将缓存的位置选择为 /sdcard/Android/data/<application package>/cache 这个路径.选择在这个位置有两点好处:第一,这 ...

  3. 重置Cacti密码

    Cacti登录密码忘记,重置Cacti密码 用root用户进入系统 [root@localhsot]# mysql -u root -p mysql> show databases; mysql ...

  4. java.sql.SQLException: Incorrect string value: '\xE6\x88\x91\xE7\x9A\x84...' for column 'groupName'

    java.sql.SQLException: Incorrect string value: '\xE6\x88\x91\xE7\x9A\x84...' for column 'groupName' ...

  5. Synchronized关键字整理

    Synchronized关键字整理 作用:能够保证在同一时刻最多只有一个线程执行该段代码,以达到保证并发安全效果. 两个用法: 1.对象锁: 包括方法锁(默认锁对象为this当前实例对象)和同步代码块 ...

  6. 一个小笔记(5):A*算法

    A-Star算法是一种静态路网中求解最短路径最有效的直接搜索方法其实百科有 http://baike.baidu.com/link?url=CvmkWQIAmztYgMq3Nk1WyWkDiC0koV ...

  7. Bootstrap历练实例:带有下拉菜单的标签和胶囊导航

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  8. graphviz 布局和子图,表格教程

    有了这三个利器,就搞定架构图了. 子图间互相调用要开启 http://graphviz.org/pdf/dotguide.pdf

  9. angular-file-upload 在IE下使用的坑

    如果在控件配置里面设置了queueLimit属性为1,就是队列文件个数为1,并且在<input>标签设置里multiple属性. 在IE浏览器上传附件的时候,浏览器会报错“SCRIPT50 ...

  10. Fortran学习笔记5(数组Array)

    数组的声明方式 一维数组 二维数组 多维数组 数组索引值的改变 自定义类型的数组定义 对数组内容的设置 利用隐含式循环设置数组初值 对整个数组操作 对部分数组的操作 where函数 Forall函数 ...