题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj。用下面的连起来,使得所有边的长度最小?

题解:直接给出吧

f[i][j]=min(f[i][k]+f[k+1][j]+cost(i,j)

cost(i,j)=a[k].y-a[j].y+a[k+1].x-a[i].x;

明显了吧

证明一下,搞一搞,四边形性质就出来了,模板题吧。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#define N 1007
#define M 500007
#define inf 2000000009
using namespace std; int n;
int f[N][N],s[N][N];
struct Node{int x,y;}a[M]; int cost(int i,int j,int k)
{
if (k>=j) return inf;
return a[k].y-a[j].y+a[k+].x-a[i].x;
}
int main()
{
while (~scanf("%d",&n))
{
for (int i=;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
for (int i=;i<=n;i++)
s[i][i]=i;
memset(f,,sizeof f);
for (int L=;L<=n;L++)
for (int i=;i+L-<=n;i++)
{
int j=L+i-;f[i][j]=inf;
for (int k=s[i][j-];k<=s[i+][j];k++)
{
int tmp=f[i][k]+f[k+][j]+cost(i,j,k);
if (tmp<f[i][j]) f[i][j]=tmp,s[i][j]=k;
}
}
printf("%d\n",f[][n]);
}
}

hdu3516 Tree Construction (四边形不等式)的更多相关文章

  1. [HDU3516] Tree Construction [四边形不等式dp]

    题面: 传送门 思路: 这道题有个结论: 把两棵树$\left[i,k\right]$以及$\left[k+1,j\right]$连接起来的最小花费是$x\left[k+1\right]-x\left ...

  2. HDU 3516 Tree Construction (四边形不等式)

    题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 思路:考虑用区间表示,f[i][j]表示将i到j的点连起来的 ...

  3. hdu3516 Tree Construction (区间dp+四边形优化)

    构造方法肯定是把相邻两个点连到一起,变成一个新点,然后再把新点和别的点连到一起.... 设f[i,j]为把第i到j个点都连到一起的代价,那么答案就是f[1,n] f[i,j]=min{f[i,k]+f ...

  4. hdu3516 Tree Construction

    Problem Description Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi & ...

  5. HDOJ 3516 Tree Construction 四边形优化dp

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿 ...

  6. HDU.3516.Tree Construction(DP 四边形不等式)

    题目链接 贴个教程: 四边形不等式学习笔记 \(Description\) 给出平面上的\(n\)个点,满足\(X_i\)严格单增,\(Y_i\)严格单减.以\(x\)轴和\(y\)轴正方向作边,使这 ...

  7. HDU 3516 DP 四边形不等式优化 Tree Construction

    设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1 ...

  8. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  9. 省选算法学习-dp优化-四边形不等式

    嗯......四边形不等式的确长得像个四边形[雾] 我们在dp中,经常见到这样一类状态以及转移方程: 设$dp\left[i\right]\left[j\right]$表示闭区间$\left[i,j\ ...

随机推荐

  1. 百度地图API简单初始化

    <script src="http://api.map.baidu.com/api?key=&v=2.0&ak=youkey"></script& ...

  2. iOS Getter 和Setter 注册xibcell

    // 初始化cell的xib的方式 [tableView registerNib:[UINib nibWithNibName:@"LXmiddleCell" bundle:nil] ...

  3. 线程池ThreadPoolExecutor参数分析

    概述 比如去火车站买票, 有7个(maximumPoolSize)售票窗口, 但只有3个(corePoolSize)窗口对外开放.那么对外开放的3个窗口称为核心线程数, 而最大线程数是7个窗口. 如果 ...

  4. PMP项目管理学习笔记(12)——范围管理之创建工作分解结构(WBS)

    创建工作分解结构过程是范围管理知识领域中最重要的过程,因为要在此过程明确所要做的全部工作 输入:收集需求和定义范围过程的输出会成为创建工作分解结构过程的输入(需求文档.组织资产过程.项目范围说明书) ...

  5. 51nod 1272 最大距离

    题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 给出一个长度为N的整数数组A,对于每一个数组元素,如果他后面存在大于等 ...

  6. 李开复:AlphaGo 若打败了世界冠军,意味着什么?

    创新工场董事长李开复在知乎就AlphaGo与李世石的人机大战发表了自己看法,他认为四个月前的AlphaGo击败李世石基本不可能,不过这四个月AlphaGo进步很多,比赛应该很精彩.但是,无论这次结果如 ...

  7. Android(java)学习笔记157:开源框架的文件上传(只能使用Post)

    1.文件上传给服务器,服务器端必然要写代码进行支持,如下: 我们新建一个FileUpload.jsp的动态网页,同时我们上传文件只能使用post方式(不可能将上传数据拼凑在url路径下),上传数据Ap ...

  8. PE基础1

    PE文件概述 文件格式 .png ..mp4..gif..dll等等,这些文件都具有不同格式 不能随意修改这些文件,否则将无法打开 PE文件(可执行文件) 学习PE文件目标 掌握PE文件就掌握wino ...

  9. iview分析

  10. QT_2

    1.默认生成代码的含义(.pro)